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Figure 1: SpecTrans is a versatile material classification technique that enables various applications with textureless, specular
and transparent surfaces. a) SpecTrans sensor in action. b) A transparent showcase made of six different materials that shows
different display contents according to which side the user is touching. c) A context-aware smartphone home button that adapts
the appearance and behavior of the user interface. It shows bigger icons when a user touches the button with a winter glove made
from conductive-threads.

ABSTRACT
Surface and object recognition is of significant importance
in ubiquitous and wearable computing. While various tech-
niques exist to infer context from material properties and ap-
pearance, they are typically neither designed for real-time
applications nor for optically complex surfaces that may be
specular, textureless, and even transparent. These mate-
rials are, however, becoming increasingly relevant in HCI
for transparent displays, interactive surfaces, and ubiquitous
computing.

We present SpecTrans, a new sensing technology for surface
classification of exotic materials, such as glass, transparent
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plastic, and metal. The proposed technique extracts opti-
cal features by employing laser and multi-directional, multi-
spectral LED illumination that leverages the material’s opti-
cal properties. The sensor hardware is small in size, and the
proposed classification method requires significantly lower
computational cost than conventional image-based methods,
which use texture features or reflectance analysis, thereby
providing real-time performance for ubiquitous computing.

Our evaluation of the sensing technique for nine different
transparent materials, including air, shows a promising recog-
nition rate of 99.0%. We demonstrate a variety of possible
applications using SpecTrans’ capabilities.
Categories and Subject Descriptors: H.5.2 User Interfaces:
Input devices and strategies
Keywords: Sensors; material classification; laser speckle;
multi-spectral sensing; ubiquitous computing; context-aware
mobile computing

INTRODUCTION
Context is extremely important in Human-Computer Interac-
tion (HCI). It is particularly relevant for interactions in the
real world, such as for ubiquitous computing, wearable de-
vices, organic user interfaces and mixed reality. There are
many different sensing techniques that enable an interface to
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adapt its appearance, behavior, functionality and representa-
tion to best fit the user’s context. Hinckley et al. [8], for ex-
ample, describe how a mobile device can adapt its interface
to the user based on proximity, touch, grip and tilt.

Other works have focused on inferring information from the
interaction and input surfaces themselves. Harrison and Hud-
son [7], for example, use a single photoresistor with multi-
spectral illumination to allow a mobile device to identify the
surfaces on which it is placed.

Magic Finger [35], on the other hand, uses a NanEye camera
to classify ordinary materials by their textures. Similar to the
Anoto technology1 that uses printed microdot patterns, Magic
Finger makes it possible to recognize small letters (2 pt) and
fiducial markers printed by an office laser printer to trigger
functionality via the encoded data.

Emerging interactive surfaces, transparent displays, smart
homes, and other real-world environments, introduce new
challenges for this type of sensing, which cannot be addressed
by the above-mentioned techniques. It is often not feasible
to modify surfaces, such as store display windows, projec-
tion screens, or interactive tabletops, for practical, technical
or aesthetic reasons. We may, for example, wish to main-
tain a see-through display’s transparency while being able to
seamlessly support detection and recognition. Many popu-
lar materials today, such as machined aluminum and plastics,
not only lack visual texture, but may also be highly specular
or transparent.

To support context-awareness in these scenarios, we intro-
duce SpecTrans, a new sensing technique that can capture
rich information about the material’s optical properties at
high speed with minimal computation. SpecTrans combines a
fast image sensor with multi-directional, multi-spectral imag-
ing to capture the varying optical properties of different ma-
terials under different lighting conditions (Figure 2). This
makes it possible to extract simple, yet efficient, features for
material classification that cannot be observed given a sin-
gle image under a fixed illumination. Our sensing hardware
contains an optical mouse image sensor, a laser emitter, and
20 light emitting diodes (LEDs), clustered with five different
wavelengths in four directions. The image sensor’s on-chip
image processing unit can execute several fundamental opera-
tions before transmitting the data to a microcontroller for fur-
ther processing, which enables real-time feature extraction.

CONTRIBUTIONS
This paper proposes a novel method for classifying surfaces
of different materials in a mobile context, using a small and
fast image sensor with laser and multi-directional, multi-
spectral LED illumination:

1. We introduce a novel material classification technique
based on the laser speckle and multi-directional, multi-
spectral capture of optical material properties.

2. We describe the design and implementation of sensor hard-
ware and software that enable embedded devices with real-
time material classification with micro-controllers.

1http://www.anoto.com/
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Figure 2: SpecTrans sensor (bottom view). Four LED clus-
ters with five different wavelengths (red, green, blue, and
two infra-red (IR) wavelengths) are arranged in different di-
rections around the sensor. Together with the laser, Spec-
Trans uses 21 light sources in different configurations and se-
quences to capture a rich set of features at high speeds.

3. We report the results from classifying 21 common materi-
als, (including nine transparent ones), and show how our
SpecTrans is more versatile than image-based techniques.

4. We describe application scenarios and interactions that are
enabled by the unique capabilities of real-time, embedded
material sensing.

RELATED WORK AND APPROACHES
Material classification and context-aware computing have
significant importance to HCI. Numerous approaches have
been proposed to enable computers, devices and robots to un-
derstand the physical world so they can support responsive
and interactive systems.

Material Classification Using Imaging and Lighting
For a specific lighting and viewpoint, the visual appearance
of an opaque object, with a known shape, is determined by its
reflectance properties, which are described by the 4D Bidirec-
tional Reflectance Distribution Function (BRDF). The BRDF
is highly related to surface material properties, and material
recognition is more easily tractable if the BRDF is known.
However, from a single image with an unknown object shape
and illumination, this task is extremely challenging, since
capture of the complete BRDF requires knowledge of object
shape and images from all lighting directions and viewpoints
[17]. When an object is translucent or transparent, its re-
flectance becomes even more complicated and needs to be
described by a higher dimensional model [11].

Material classification can be difficult using a single natural
image [27], but in a controlled setup with a specially designed
imaging device, it becomes much more tractable even with
only color and texture information. A miniature RGB camera
could, for example, be worn on the fingertip to sense environ-
mental and artificial textures, such as printed, microscopic
characters or fiducials, to enable context-triggered taps and
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gestural interactions [35]. Similar image-based surface clas-
sification techniques are used in robotic hand manipulation
tasks using a laser optical mouse sensor [16]. However, these
methods are designed for surfaces with distinctive textures,
and do not work on transparent surfaces.

There are existing works that explore the use of multi-
directional lighting, in addition to color and texture, to es-
timate microscale 3D surface structure for improved material
classification [15]. Using multi-spectral and multi-directional
illumination to create discriminative illumination conditions
enables the classification of complex materials, such as un-
painted raw metals [4]. Our approach shares the same the-
oretical support as that of [4], but we use a simplified setup
in terms of diversities of spectra and lighting directions. By
carefully selecting representative spectra and lighting direc-
tions, we focus on capturing enough features for real-time
determination of material categories for HCI applications, in-
stead of producing a pixel-wise classification.

Our work emphasizes real-time material classification for
mobile contexts and is, therefore, different from BRDF mea-
surement devices, such as [1] and [25], which are designed
for accurate BRDF capture. The former device is a 0.5 m
hemisphere, which is neither portable nor real-time, while the
latter requires a pre-defined BRDF chart and 30 seconds for
data capture. Our applications do not require capture of com-
plete BRDF information since we focus on the measurement
of sufficient information for real-time classification of chal-
lenging materials.

There are more sophisticated material and content detection
techniques for scientific and industrial applications. For ex-
ample, millimeter wave and terahertz technology are being
used for scientific and security purposes to detect materials
from a distance [13]. These sensing methods are, however,
less applicable to wearable and ubiquitous computing given
their complexity, cost, size, and power requirements.

The closest work to ours is [7], which shows how a set of non-
directional ultraviolet, red, green, blue and infrared LEDs,
in combination with a photoresistor and a light sensor IC
can measure simplified multi-spectral characteristics of ob-
ject surfaces to enable context-aware mobile devices. Our
method captures more complex surface features in consider-
ably more conditions, beyond simply texture and color, using
104 different lighting conditions, including coherent laser il-
lumination. This enables interaction with not only more com-
plex materials, but also specular and transparent surfaces in
particular, where layering becomes an additional possibility.

Environmentally Embedded Markers and Tags
Markers and tags are often used to enable augmented reality
(AR) and context-aware ubiquitous computing. Image-based
fiducial markers, e.g., bar codes, QR codes, and ARToolKit
tags [12], are popular for camera-based AR. The Anoto tech-
nology is based on a pen with an embedded small-size video
camera, to track the absolute position of its tip on a paper with
printed microdot patterns. Encoded Reality2 proposes encod-
2http://viral.media.mit.edu/projects/encoded_
reality/

ing patterns in physical objects using laser etching and other
fabrication techniques. These approaches require special ob-
jects or surface modifications to enable recognition. Bokode
[19] uses tiny optical tags that can be read using conventional
cameras from a distance, whereas other work uses small ac-
tive and passive tags that communicate using radio frequen-
cies [18], time-coded projection patterns [23], or spatially-
coded projection patterns [34]. Additive and subtractive man-
ufacturing technologies, e.g., 3D printing, enable embedding
custom 3D markers inside objects that can be decoded with a
terahertz scanner [33], or to create optical components such
as light-guide pipes and optical sensors [32].

The need for special tags in the environment, however, lim-
its possible applications and scalability through the need of
special infrastructures and instrumentation.

Context Classification for Mobile and Wearable Scenarios
There is a tremendous body of work on user and mobile de-
vice context detection. Personal information devices, such as
smartphones, are intimate objects that can infer rich informa-
tion about user context. The device can use prediction models
for the actions users are about to perform, based on how the
device is grasped or held, for example, through the use of ca-
pacitive sensor matrices [30]. Ichikawa et al. surveyed where
people keep their phones [10], while Kunze et al. investigated
device location detection using accelerometers [14]. More re-
cently, Wiese et al. demonstrated sensor fusion of multiple
sensing dimensions, using a capacitive sensor matrix, multi-
spectral light sensor, and an accelerometer [31].

Interactions with Transparent Materials and Surfaces
Using Optical Properties
Numerous interaction techniques have been proposed to in-
teract with transparent surfaces and objects, utilizing their
optical properties for sensing and display. Sato et al. ex-
ploited the photoelastic effect from transparent elastic mate-
rials when they are deformed to enable freeform tangible in-
teraction on a display [26]. The use of index-matched liquid
makes an elastic container with glass particles optically trans-
parent, to enable both shape-sensing and projection through
the volume, in a free-form jammable user interface [3]. Op-
tical fibers and light guide pipes are classical optics compo-
nents, but they can be used in various applications, such as
capturing fingerprints on a touchscreen [9], fabricating inter-
active 3D printed objects with curved display surfaces [2, 21]
or for sensing [32]. Rekimoto et al. [24] explore transparent
tiles for tangible interaction with embedded affordances and
position sensing.

We note that the sensing of optical properties for transparent
materials has interesting potential for spatial and mobile plat-
forms where issues like size, power, computational cost and
complexity must be taken into consideration.
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Laser Speckle Sensing for Interaction
Previous work has also explored speckle sensing for user in-
terfaces. SpeckleSense [36] explores the use of high-speed
motion sensing using laser speckle for input devices, gestural
interaction and spatially aware mobile devices. Olwal et al.
[20] described a platform that uses speckle sensing for gestu-
ral interaction with embedded electronics. Davis et al. [28]
employed speckle to detect surface tampering.

SPECTRANS: DESIGN OF MULTI-SPECTRAL,
MULTI-DIRECTIONAL MATERIAL CLASSIFICATION
In SpecTrans, our goal is to overcome the limitations of
camera-based capture, with an embedded sensor that can de-
tect surface material using a low-cost laser mouse sensor and
multi-directional, multi-spectral illumination. We leverage
on-chip image processing to support real-time material clas-
sification from a relatively small, but comprehensive, set of
features that can be processed on embedded platforms.

Surface Sensing with Coherent and Incoherent Light
Three major techniques are used in commercial optical mice
today. Laser Doppler Interferometry [22] relies on the inter-
ference of laser light, and tracks velocity without an image
sensor. This hardware is, therefore, less suitable for captur-
ing the type of surface features we are interested in. In con-
trast, LED-illuminated and laser-illuminated mice use small
image sensors (matrix of photo sensors) on the chip. The light
source is also embedded with lenses. We combine these two
lighting techniques with multi-directional lighting for robust-
ness and high surface recognition rates.

Surface Feature Capture
LED-based optical mice illuminate the operating surface,
e.g., a mouse pad or table, with collimated incoherent light.
The surface image is captured by the sensor, and 2D displace-
ment between two consecutive frames is calculated by an on-
chip processor at very high speeds (1–10 kHz). A collimating
lens after the LED illumination helps capture surface features.

Laser Speckle Capture
Laser-based optical mice use coherent light to achieve sta-
ble tracking on various surfaces, including very shiny and flat
surfaces. A laser diode on a sensor chip emits a coherent
laser beam, which travels through a collimating lens and il-
luminates the surface. The reflected light from the tracking
surface creates a fine speckle pattern, which the image sen-
sor tracks, instead of the surface texture. The speckle pattern
results from interference of the reflected wavefronts due to
microscopic roughness on the surface that varies their path
lengths [36]; therefore, it can exploit small variances in ma-
terial surfaces that are much smaller than the pixel pitch. We
note that the speckle pattern is a statistic of phenomena at the
image sensor plane.

We take advantage of this speckle phenomena to capture
features of textureless surfaces, such as transparent plastic
sheets, glass sheets, and shiny metal.

Multi-directional and Multi-spectral Lighting
We use multi-directional and multi-spectral lighting to ac-
quire more surface detail. Leveraging the fast mouse sensor

enables us to quickly take multiple samples of surface reflec-
tion.

Highly specular surfaces, e.g., metal, reflect incoming light
like a mirror, while diffused surfaces reflect light more uni-
formly. Transparent surfaces interact with light in a compli-
cated way, including both reflection and refraction. Inspired
by [4], which indicated that multi-directional and multi-
spectral information can provide discriminative features for
textureless material classification, we design our sensor with
multi-spectral LEDs at different locations.

Multi-directional illumination is key in the design of our sen-
sor. Transparent and highly specular materials have com-
plicated, but discriminative, BRDFs concentered around the
center of the specular lobe. These delicate differences can
only be captured with carefully designed multi-directional
lighting and a light sensor array, rather than a single pixel
as in [7]. SpecTrans enables such sampling around the center
of the specular lobe by using an image sensor, under various
lighting directions and spectrums. The 2D intensity map of
all pixels (texture features) is condensed to three key BRDF
parameters with no computational cost for a microcontroller.
Our method is also fundamentally different from [35] that
relies on texture patterns from the image sensor, which add
computational and bandwidth constraints.

Sensor

Laser

Lens
PCB

PCB

Surface Mount LED

Spacer

Surface

Figure 3: Sectional and exploded view of the proposed Spec-
Trans sensor. Additional 20 LEDs in 5 different wavelengths
and from 4 directions are arranged on a custom PCB.

Sensing System Design
Hardware Design
We use a high-speed laser optical mouse sensor (Avago
ADNS-95003) with a small form factor lens (Avago ADNS-
6190-002). The lens is a molded single-piece plastic with
two optical lens components — one for collimating a laser
3http://www.pixart.com.tw/
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Laser LED Cluster 2 (Bottom)
IR1->B->G->R->IR2

LED Cluster 3 (Left)
IR1->B->G->R->IR2

LED Cluster 1 (Right)
IR1->B->G->R->IR2

LED Cluster 4 (top)
IR1->B->G->R->IR2

All LED Clusters
IR1->B->G->R->IR2

Laser

Surface

Sensor

Figure 4: Different lighting configurations. Four clusters of five LEDs are located around the image sensor and laser emitter.

beam (Vertical-cavity surface-emitting laser (VCSEL) with
832-865 nm peak wavelength) to illuminate the tracking sur-
face, and the other for imaging the tracking surface in the
30×30 pixel image sensor. We extend these optical elements
with four LED clusters placed at different positions, each
containing LEDs at different peak wave lengths of blue (475
nm), green (525 nm), red (621 nm), and two infrared (850
and 940 nm) for a total of 20 LEDs (see Figure 2 and 3
4). We chose health-friendly (non-ultraviolet) and sensitive
wavelengths for the sensor. The LED clusters are arranged
in a square to enable multi-directional lighting from various
angles while keeping the compactness of the sensor module.

We created two versions of our control boards using Arduino-
compatible 32-bit ARM microcontrollers: a) Teensy 3.1
(Cortex-M4, 96MHz) with Microchip RN-42 Bluetooth mod-
ule, and b) Spark Core (Cortex-M3, 72MHz) with on-board
WiFi module. Our prototype sensing system is completely
wireless and its dimension is roughly 60×60×40 mm, in-
cluding a rechargeable battery. The optical part of the system
(sensor chip, lenses, and LEDs) is 20×18×11 mm. It enables
the embedding of the sensor in handheld or wearable devices,
as well as, in the environment.

We set the LED driving current to 30 mA using constant cur-
rent regulator ICs. The power consumption of the LEDs can
be minimized by setting the same times for LED illumination
and sensor exposure time. The depth of field of the ADNS-
9500 sensor is designed to be very small, i.e., +/- 0.22 mm
as the typical distance from the lens reference plane to the
tracking surface. We use a thin (0.6 mm) PCB to give maxi-
mum distance between surfaces and the illumination. A black
plastic spacer keeps the sensor-surface distance constant (see
Figure 2 and Figure 3 top.)

Different Lighting and Shutter Speed
As previously described, we use both the collimated coherent
laser and incoherent LED for classification. Figure 4 illus-
trates the different lighting patterns that we employ. As we
use LEDs with five different wavelengths, the total number of
lighting patterns are 26 (1 laser + 5 wavelengths) × (4 LED
clusters + all LED clusters).
4This diagram was created based on http://www.
electronicproducts.com/Sensors_and_Transducers/
Image_Sensors_and_Optical_Detectors/Optical_mouse_
technology_Here_to_stay_still_evolving.aspx and the
datasheet of Avago ADNS-9500 sensor.

While the chip normally uses auto exposure for mouse appli-
cations, our objective is to capture multiple exposures of the
surface features under controlled conditions. We, therefore,
configured the sensor to use manual shutter speeds in order
to obtain high dynamic range images to use in the classifica-
tion. We chose four fixed exposure periods: 0.83, 6.64, 53.12,
and 424.96 µs. These periods correspond to 39, 312, 2496,
and 19968 clock periods of the sensor chip’s internal oscilla-
tor at 47MHz. Thanks to this multi-exposure setup, we can
capture a high dynamic range of surface reflections from dark
carpet to shiny metal, and black synthetic fur to transparent
glass. Our current implementation can capture four features
at four different exposure setups with 26 lighting conditions
(416 features in total) in merely 117 ms.

Sensing Capabilities and Surface Features
The speckle pattern is a random image with low information
density, which makes it possible to reduce the captured image
to the statistical parameters that describe it.

Similar to the sensors used in previous work (e.g., [20]),
the sensor we use has various on-chip-computation features,
such as displacement (∆x,∆y), mouse lift detection, dark-
est/brightest/average pixel intensity, surface quality, and raw
pixel values. Surface quality is a measure of valid feature
points captured by the ADNS-9500 sensor. It provides a use-
ful index for roughness of the surface. We experimentally
determined that pixel intensity statistics and surface quality
are the best descriptors of material features.

SpecTrans exploits on-board processing to extract three key
parameters and reduces the amount of data to transfer from
900 to four bytes:

• Average pixel intensity→ Average brightness
• Darkest and brightest pixel→ Contrast
• Surface quality→ Pattern granularity

Transparent or highly specular surfaces provide almost no
texture information for the sensor to capture under collimated
LED illumination. Our proposed multi-directional illumina-
tion overcomes this challenge by capturing complicated and
discriminative material features of such surfaces.

Our embedded multi-spectral, multi-directional sampling re-
lies on the sensor’s high-speed capture, enabled by the on-
chip computation of these features. This makes these features
available to microcontrollers at a low bandwidth, since there
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c)

a)

b)
Figure 5: Three different contents are associated with each
side of the showcase. a) Top-view blueprint of the plane. b)
Video footage of Wright Flyer flying toward the video cam-
era. c) Animation showing how the engine and propeller
work.

is no image transfer or processing outside the sensor chip.
By choosing these features, we ensure scalability, since their
suitability for on-chip computation makes them available in
most types of optical mouse sensors.

APPLICATIONS AND INTERACTIONS
SpecTrans is unique in that it can classify transparent and
specular surfaces. Its minimal computational cost and real-
time performance make it suitable for many different types
of embedded devices and scenarios, some of which we will
discuss below. All of the described demo applications were
implemented and work in real time.

The intent of this paper is to show some possibilities with
SpecTrans. It is a complementary technology that reduces
the need for switches, buttons and other active electronics,
but it is not intended to replace them entirely. SpecTrans is
designed for location awareness, but it also enables the em-
bedding of invisible information in raw materials without ex-
tra cost, electronics or infrastructure.

Architects, industrial designers, interior designers, and digital
media artists continually seek new tools to realize their digital
creations in existing materials. For example, museum diora-
mas are designed to reproduce wildlife scenarios; however,
QR codes, AR markers, RFID/NFC tags, and caption boards
risk interfering with the exhibit and its artifacts. There are
similar challenges for store display windows and price tags in
jewelry stores. SpecTrans expands the interaction vocabulary
for such scenarios.

Encoding Imperceptible IDs within Transparent Surfaces
Interacting with transparent surfaces and displays enables ex-
tremely useful applications. By sensing imperceptible optical
characteristics in the surfaces, the system maintains its trans-
parent characteristics, while being able to respond to different
user interactions.

Transparent Showcase: Adaptive Presentation
The six sides of our transparent showcase use different trans-
parent materials with imperceptible properties. Our system

can accurately distinguish between the six transparent sur-
faces of the cube, based on real-time classification results.
Using this information, we map different types of content and
interactions to the individual faces of the showcase, accord-
ing to what has been sensed by our device (Figure 1 b) and
Figure 5.)

A smartphone with our embedded sensor displays unique
contents based on which side it is held against. This example
shows a model of a Wright Flyer in the showcase (Figure 5.)
By scanning the front face of the showcase, the screen dis-
plays old footage of the plane flying towards the user. When
the user scans the right face of the showcase, where the pro-
peller of the plane is most visible, an animation shows how
the engine and propeller work. Finally, when the user touches
the top of the showcase, a top-view blueprint of the airplane
appears on the screen. While it is unnoticeable to the user,
each transparent surface naturally encodes an ID in the mate-
rial’s optical properties.

Transparent Control Pads: Changing Control and Viewports
We have also explored scenarios that combine SpecTrans
with tracking on transparent surfaces. Figure 6 shows how
the user can physically switch a mouse pad to change the
mapping of the mouse’s movement between zooming, pan-
ning and rotation. Figure 7 shows how different segments
of a larger mouse pad can be mapped to viewports or virtual
desktops to leverage a user’s proprioception and spatial mem-
ory. In this example, placing the mouse in a segment activates
either an overview or one of three perspectives.

Transparent Overlays: Tangible Data Filters
Figure 8 shows how a physical overlay can be detected by
SpecTrans to reveal additional information and personalize
the UI on a tablet, without interfering with the display. This
approach does not require an alignment of tags and sensors,
as for NFC, and fully maintains the transparent properties of
the passive material. The drawback is, of course, that anyone
with access to the material can replicate the filter, but such
security issues are beyond the scope of this paper.

Context-Aware Input: Adapting UI to Skin or Glove
Certain input devices, like optical trackballs (e.g., BlackBerry
Curve 8520), fingerprint readers (common on many laptops),
and fingerprint-sensing buttons (e.g., Apple TouchID) rely on
the user’s contact with a sensor. We augmented an iPhone
5S with SpecTrans to infer which material is placed on top
of it. This information can be used to adapt the appearance
and behavior of the UI for subsequent interactions. The UI
could, for example, make the UI elements larger and adjust
touch-screen sensitivity if it detected that the user was wear-
ing gloves by sensing leather, wool, or cotton instead of skin.
Figure 1 c) shows how our current prototype changes the UI
to a few large buttons for apps that are relevant outdoors,
when gloves are detected.

TECHNICAL EVALUATION
SpecTrans extends previous research that used color- and
texture-based sensing for context-aware interaction [7, 35]
by extracting invisible information directly from the environ-
ment, i.e., transparent raw materials. We evaluate the surface
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Figure 6: Controller for a floating transparent screen. Differ-
ent controls (Pan, Rotate, and Zoom) are associated with a set
of mouse pads with different transparent materials.

All viewports Perspective view

Front view Right view

Hovering

a) b)

c) d)
Figure 7: Four viewports of Rhinoceros 3D CAD software are
associated with four mouse pads with four different materials.
1) Showing all viewports when hovering the mouse in the air.
2) Perspective view. 3) Front view. 4) Right view.

classification accuracy of our sensor with three types of ma-
terial for quantitative comparison: transparent material, syn-
thetic animal fur and skin, and surfaces typically found in
home and office environments.

We report on the classification accuracy and investigate how
each lighting condition contributes to the classification. We
selected the following materials for each test scenario:

Nine transparent materials: Polyethylene terephthalate
glycol-modified (PETG), polyvinyl chloride (PVC), cast
acrylic, cellulose acetate, extruded acrylic, glass, micro-
scope slide, polycarbonate, and air (no material). (See
Figure 9.)

Five synthetic animal furs and skins from a picture book:
Lion fur, panda fur, iridescent colored lizard skin, elephant
skin, and zebra fur.

Seven office and living spaces: Office desk, aluminum lap-
top palm rest, chair seat (fabric), chair arm rest (rubber),
fabric mouse pad, plastic mouse pad, and carpet.

Data capture
Data capture was done by placing the sensor on top of the sur-
face sample. For each sample, we captured 20 data instances

Sales view Customer view

All data:
cost, profit ratio. Final quote

Figure 8: Changing the behaviors of a tablet device by over-
laying transparent sheets made from different materials. It
shows numerical data for the number of items in stock, break-
down costs, profit ratio, and remarks only for sales personnel,
while a customer can only see the sum.

while moving the sensor gently over the surface. This process
was repeated five times for all of the materials. In total, we
obtained 100 samples for each material.

For transparent materials, we add “Air” (a surface without
any material) to compare with other transparent plastics and
glasses. All experiments were conducted in an ordinary office
environment with fluorescent ambient lighting. The transpar-
ent surfaces are cleaned with lens cleaning wipes before being
captured.

Classification
We used the Support Vector Machine (SVM) classifier by Se-
quential Minimal Optimization (SMO), implemented in the
Weka Toolkit [5] to perform classification. As features, we
used the four parameters (surface quality, average pixel inten-
sity, darkest and brightest pixel intensity) directly read from
the sensor for each lighting configuration and shutter speed
configuration. In total, we had 416 features (4 parameters ×
4 exposure times × 26 lighting patterns) for one data point.

Performance Evaluation
We performed a ten-fold cross validation for three scenarios
independently to evaluate how accurately we could classify
the materials. The average correct classification rate is shown
in Figure 10 with ten different lighting conditions in Table 1
to prove the necessity of introducing multi-spectral and multi-
directional lighting.

We achieved a high recognition rate (above 99.0%) on av-
erage for all of the materials with our comprehensive setup
J (SpecTrans), when all lighting directions and spectra were
considered. Setup C was designed to mimic a simple multi-
spectrum LED method. The general trend we observed is
that greater variance in lighting directions and more spec-
tral configurations will produce higher classification accu-
racy. For transparent materials in Figure 10 a), the simple
non-directional multi-spectrum LED sensing (C) showed a
low correct classification rate of 65.44%, which verifies the
necessity of our comprehensive setup. By adding laser to
the illumination, correct classification rates increase under all
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Figure 9: Close-up views of eight transparent materials. All pictures were taken with the same camera setting and lighting
condition (Nikon D5000, F 5.6, exposure 1/100 in an ordinary office environment.)
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Figure 10: Correct classification rate: a) transparent materials, b) synthetic animal fur and skin, and c) office and living spaces.
For each scenario, ten lighting configurations in Table 1 were tested. J (with an arrow) is the SpecTrans.

conditions as seen in Figure 10 (green and red bars). With
transparent materials (Figure 10 a)), the correct classification
rate increased by adding laser from 98.78% (I) to 99.0% (J),
and from 65.44% (C) to 77.11% (D). Also, Laser only (A)
surpassed single LED (B).

Table 1: Lighting conditions for performance evaluation.

LED Cluster #
1 1 and 2 1, 2, 3, 4, and All

IR-850 nm B E H
IR-850 nm, IR-940 nm, 
R, G, and B

C F I

IR-850 nm, IR-940 nm,
R, G, and B, and Laser

D G J 
(SpecTrans)

Laser Only A

Location
Spectrum

Figure 11 shows the confusion matrices for the transparent
materials under three (out of ten) different lighting configura-
tions. These matrices show how the combination of laser and
multi-directional and multi-spectral illuminations contributes
to more accurate classifications.

LIMITATIONS AND FUTURE WORK
Our current implementation used a dedicated optical sensor
for material classification. It would, however, be possible
to temporally multiplex material classification with motion
sensing using a single optical sensor and chip. This could, for
example, be done by inferring a change of context, such as de-
tecting lift-off or landing on surfaces using the sensor chip’s

lift detection function or inertial sensors. Thus, after detect-
ing lift-off, a mouse could switch into the SpecTrans material
classification mode upon surface contact and after identifica-
tion returns to the tracking mode again. Another approach is
to alternate between classification and tracking, making use
of high-speed tracking and material classification.

SpecTrans requires additional illumination for multi-spectral,
multi-directional captures. For this project, we used 20 LEDs
and a laser in our general SpecTrans device; however, fewer
LEDs could be used for less challenging materials.

We currently can capture all 11 features under 104 differ-
ent lighting conditions and exposures, which are transmitted
to the micro-controller for further processing. The capture
process takes 117 ms, which is fairly fast and sufficient for
real-time applications. In future application scenarios, we an-
ticipate that the capture will use fewer LEDs and exposure
settings, optimized for the specific materials of interest. Our
current implementation, with a very wide dynamic range, was
designed to be versatile from clear glass to matte black paint.
Single exposure is sufficient for specific applications, such as
UI with transparent surfaces, resulting in a four times faster
data capture. This, in combination with a faster microcon-
troller and optimized data transfer, will yield significantly
higher speeds. Another approach is to use multiple sensors
that can collect different features in parallel.

For certain applications it may, however, be interesting to ex-
pand the illumination for wider, multi-spectral capture using
both additional LEDs and lasers. We note that the VCSEL
laser has a vertical configuration on the silicon, which makes
it an ideal building block for dense array arrangements with
multi-spectral lasers. For applications that require a complete
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Figure 11: From left to right, confusion matrices for lighting condition A, C, and J with transparent materials (Figure 10 a)). The
value is the number of correctly classified examples among 100 samples. We omitted the zero values in the matrices for better
clarity.

BRDF capture, the system could be coupled with more ad-
vanced optical elements (e.g., [6]).

We are also interested in applying our sensor to other appli-
cations, such as wearable input for health purposes, e.g., for
detecting body location or capturing skin subsurface imag-
ing. We are, in particular, interested in using SpecTrans for
non-invasive health screenings with techniques such as laser
speckle imaging and laser doppler flowmetry to assess micro-
circulatory functions and blood flow [29].

The SpecTrans multispectral configuration also addresses
challenges with ambient light, which are not an issue in prior
work that focuses on opaque surfaces. While environmen-
tal lights, such as sunlight, incandescent, fluorescent, and
LED light sources, might affect the sensor, their incoherence
means that they do not interfere with the laser speckle pattern.
Additionally, in future work, ambient light could be filtered
out using conventional modulation noise reduction methods,
which are widely used, for example, in TV remote controls.

CONCLUSIONS
In this paper, we presented SpecTrans, a new sensing plat-
form to provide context-aware user interfaces using rapid,
multi-spectral, multi-directional capture and classification of
optically challenging materials. Our technology can be used
alone or in conjunction with other sensing approaches to en-
able rich and robust context awareness for ubiquitous, mobile
and wearable computing. SpecTrans uses a low-resolution,
ultra-fast, image sensor to capture a small set of optical
features under varying illumination conditions. Hardware-
accelerated image processing calculates the features on the
image sensor’s chip, allowing it to be implemented as a low-
power, real-time sensing platform with a micro-controller.

SpecTrans can bring context-awareness to numerous exotic
surfaces that currently have to rely on markers, patterns or
other modifications. The versatile sensing makes it uniquely
possible to classify materials, such as acrylic, polycarbonate,
glass, and metal, which is particularly relevant for emerg-
ing exotic display and interaction surfaces. SpecTrans can,
however, also be used for other materials with simpler op-
tical characteristics. Our evaluation shows 99.0% accuracy
for classifying a set of eight + one (air) surfaces, including a

range of diffuse, as well as, highly reflecting materials. These
promising results indicate the potential for SpecTrans as a
fast, low-power, low-cost technology for mobile and ubiqui-
tous context-awareness.
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