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Figure 1. Rubbing and tapping gestures activate operations while the user is touching the display, so that additional parameter 

control and functionality can be activated during the fluid interaction. (a) Rubbing in and (b) rubbing out support two operations. 
(c) Bimanual interaction on single-touch displays is simulated with a set of “tapping” techniques, where operations are executed by 

tapping with a secondary finger (left), while the primary finger (right) is touching the display. 

ABSTRACT 
We introduce two families of techniques, rubbing and tap-
ping, that use zooming to make precise interaction on pas-
sive touch screens possible. Rub-Pointing uses a diagonal 
rubbing gesture to integrate pointing and zooming in a sin-
gle-handed technique. In contrast, Zoom-Tapping is a two-
handed technique in which the dominant hand points, while 
the non-dominant hand taps to zoom, simulating multi-
touch functionality on a single-touch display. Rub-Tapping 
is a hybrid technique that integrates rubbing with the domi-
nant hand to point and zoom, and tapping with the non-
dominant hand to confirm selection. We describe the results 
of a formal user study comparing these techniques with 
each other and with the well-known Take-Off and Zoom-
Pointing selection techniques. Rub-Pointing and Zoom-
Tapping had significantly fewer errors than Take-Off for 
small targets, and were significantly faster than Take-Off 
and Zoom-Pointing. We show how the techniques can be 
used for fluid interaction in an image viewer and in existing 
applications, such as Google Maps.  
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INTRODUCTION 
Passive touch screens and finger-pointing interaction tech-
niques are well established in public installations, such as 
information kiosks and automated teller machines. Addi-
tionally, they are gaining popularity in consumer devices, 
such as cell phones and PDAs. While passive touch screens 
are intuitive and easy to learn, there are severe limitations 
in the precision with which a user can interact with them. 
While it is easy to select large objects by finger pointing, it 
can be difficult to select very small objects or specify pixel-
accurate locations. This type of interaction can be critical in 
effective selection of small targets on maps or small GUI 
elements in an operating system [1, 4, 18]. Touch-screen 
interaction can be complicated by occlusion of the target by 
the user’s hand, imprecision in selection with a finger that 
is relatively large compared with the target, poor calibra-
tion, and parallax errors caused by the offset between the 
display surface and the overlaid touch surface. 

We are especially interested in touch-screen interaction 
techniques that support fluid interaction and do not require 
multiple steps [1] or rely on on-screen widgets [1, 20]. We 
would like our techniques to, as much as possible, behave 
like the ones from which they are derived, with the possibil-
ity of supporting more precise targeting when necessary, 
without disrupting the overall interaction. In this paper, we 
explore how this goal can be achieved by directly integrat-
ing zooming gestures with the pointing action. We address 
applications in which zooming the display is not problem-
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atic, and may even be desirable. This includes not only full-
fledged zoomable user interfaces [3], but also systems for 
browsing maps (e.g., [8]), exploring images or navigating 
other types of information spaces. 

We introduce and evaluate two families of interaction tech-
niques, rubbing and tapping, comparing them with two ex-
isting baseline techniques. Rubbing and tapping both use 
zooming to make possible precise interaction on commod-
ity passive touch-screen devices. Tapping takes advantage 
of unique features of passive touch-screens, whereas rub-
bing can also be used on devices with active digitizers, such 
as Tablet PCs.  

The rubbing techniques (Figure 1a–b) augment single-
handed pointing with integrated gestural interaction to trig-
ger actions. One example is Rub-Pointing, in which rubbing 
the screen zooms in about the targeted location. 

The tapping techniques (Figure 1c) enable two-handed in-
teraction on single-touch displays, allowing the user’s non-
dominant hand to perform an action in parallel with point-
ing by the dominant hand. One example is Zoom-Tapping, 
in which the dominant hand points, while the non-dominant 
hand zooms by tapping the screen. This is accomplished by 
taking advantage of the ability of many passive touch-
screen technologies to average the location of multiple si-
multaneous points of contact, such that a second touch can 
be inferred. (While multi-touch devices and technologies 
are starting to appear [2, 9, 10, 14, 6], we note that single-
touch passive touch-screens are still the most common 
technology on devices such as public kiosks, point-of-sale 
displays,  personal computers and handhelds.) 

We also combine rubbing and tapping to create Rub-
Tapping, a hybrid two-handed technique in which rubbing 
controls zoom, while tapping confirms the selection.  

To demonstrate our touch screen techniques in practical 
applications, we developed TouchView—a zoomable image 
viewer that avoids the use of on-screen widgets altogether. 
To enable the use of our techniques in third-party programs, 
we implemented a daemon for Windows XP that intercepts 
touch screen data in the background, listening for gestures. 
When rubbing or tapping is detected, the daemon can send 
various events to the active window. We demonstrate how 
we use this to, for example, control zooming and panning in 
Google Maps in a web browser.  

RELATED WORK 
Potter and colleagues [18] introduced the Take-Off interac-
tion technique for high-precision touch-screen pointing, in 
which the user controls a cursor that is located slightly 
above the finger to ensure its visibility, and the selection is 
made upon releasing the finger from the surface. Albinsson 
and Zhai [1] compared Take-Off with traditional Zoom-
Pointing and two new touch-screen interaction techniques 
that do not use zooming. In Zoom-Pointing, a user first en-
ters zoom mode to specify a bounding box that is scaled up 
to fill the workspace, and then points and selects within the 

scaled space. Albinsson and Zhai showed that, averaged 
over all target widths, Zoom-Pointing was significantly 
faster than the other techniques they tested, with the same 
error rate.   

As Buxton points out [5], a touch screen and stylus with a 
button or tip-switch offers a three-state input model, sup-
porting an out-of-range state (offering passive tracking, 
since the finger/stylus is visible relative to the screen), a 
tracking state (button/tip-switch not depressed), and a drag-
ging state (button/tip-switch depressed). In contrast, many 
finger-operated touch screens provide only two intrinsic 
states: out-of-range (offering passive tracking) and tracking 
(often used for selection/dragging by having the touch in-
voke a mouse button press). Like other work, rubbing and 
tapping make possible through software the recognition of 
additional states beyond the two supported directly in the 
hardware. 

To avoid overloading tracking with selection on intrinsi-
cally two-state devices, MacKenzie and Oniszczak [12] 
describe the use of a lift-and-tap gesture to perform selec-
tion on a passive touchpad. Benko and colleagues [4] in-
stead use a rocking and pressing gesture of the tracked fin-
ger to trigger selection on a vision-tracked tabletop, since 
they are able to detect the full contact area in the camera 
image. Their computer vision system also provides support 
for true multi-touch interaction, enabling sophisticated 
techniques for controlling precision using multiple hands, 
which are unfortunately not applicable to common single-
touch displays. The techniques we present here use rubbing 
and tapping on a single-touch passive touch screen to trig-
ger zooming and selection, and are applicable to traditional 
single-touch displays, as well as to multi-touch displays. 

Vogel and Baudisch present Shift [20], a technique for sin-
gle-touch displays that addresses the problems of the Take-
Off technique not by offsetting the cursor, but by instead 
introducing a small offset callout that displays a copy of the 
area under the finger with its cursor. The callout is pre-
sented automatically when the finger is determined to ob-
scure a sufficiently small potential target, and, in some va-
riants, the small portion of the display in the callout is 
zoomed for easier selection. In contrast, rubbing and tap-
ping do not rely on the properties of target objects, but can 
operate instead on the current position alone (e.g., to zoom 
the entire scene). Rubbing and tapping also provide explicit 
control over zoom, which is desirable in many browsing 
applications. Rubbing could even be combined with Shift to 
support one-handed user-controlled zooming in the callout. 

RUBBING AND TAPPING 

Rubbing: Expanding pointing with simple gestures 
Rubbing provides additional parameter control through a 
simple rubbing gesture while interacting with a touch 
screen. Our approach takes into account the orientation of 
the gesture, to allow for direct access to two operations by 
“rubbing in” or “rubbing out.” After touching the display, 



 

 

rubbing is performed through a small repetitive diagonal 
motion of the finger (Figure 1a–b), described in detail be-
low. A right-handed user “rubs in” by rubbing back and 
forth along the lower-left-to-upper-right diagonal, and “rubs 
out” by rubbing along the lower-right-to-upper-left diagonal 
(with the motions switched for left-handed users). We 
found that rubbing out is slightly less convenient to per-
form, which gives rise to an effective distinction between 
the two in kinesthetic memory.  

In the implementation used in our study, we mapped “rub-
bing in” and “rubbing out” to zooming in incrementally in 
discrete steps and resetting zoom, respectively. Other proto-
types, which we describe later, replace the action of reset-
ting zoom with zooming out incrementally. Alternatively, 
different actions could be invoked, such as increasing or 
decreasing the level of detail displayed, or cycling through 
different visualization approaches. (For example, an early 
implementation of rubbing was used to control the distor-
tion in a fisheye lens [17].)  

We developed the rubbing and tapping gestures through an 
iterative experimental design process. Results from a ten-
user pilot study allowed us to reject several complicated 
designs in favor of diagonal rubbing, which was the most 
comfortable, easiest to learn and practical. A second five-
user pilot study allowed us to fine-tune zoom factors, thre-
sholds, behavior, and timeouts (all default numeric values 
are, however, run-time modifiable and configurable). 

Rubbing is detected as a series of discrete, roughly diago-
nal, strokes. A short quick stroke, followed by another short 
quick stroke in the roughly diagonally opposite direction 
identifies rubbing. We recognize strokes and their direc-
tions through simple tests.  Consider the three successive 
cursor position samples: (x0, y0), (x1, y1), and (x2, y2). If 
sign (x1–x0) ≠ sign (x2–x1) AND sign (y1–y0) ≠ sign (y2–
y1), then (x1, y1) ends the previous stroke and begins the 
next. The slope of the line between the first and last points 
of a stroke must be finite and positive for rubbing in, finite 
and negative for rubbing out. 

A stroke must also meet length and time constraints to be 
considered part of a rubbing action. A rubbing stroke must 
be longer than three pixels and shorter than fifty pixels and 
end within 500 ms of the previous stroke. An initial pair of 
these quick strokes in roughly opposite directions (i.e., 
strokes whose slopes have the same sign) identifies rubbing 
and triggers initial zooming. The deliberate nature of the 
gesture minimizes the risk of the rubbing strokes being ac-
cidentally confused with other finger movement on the sur-
face (e.g., for dragging and panning). 

Rubbing involves directional gestures, which suggests an 
interesting comparison to marking and marking menus [11]. 
However, unlike the marks of marking menus, the tiny 
strokes of rubbing are scale-dependent (strokes that are too 
large are ignored), time-dependent (strokes must be com-
pleted sufficiently quickly to be counted) and always com-
pound (a pair of strokes is required to initiate the action).  

We also investigated the use of a clockwise circular motion 
to rub in, and a counterclockwise circular motion to rub out, 
inspired by a long history of earlier work on rotational ges-
tures (e.g., [16, 7, 15, 19]). Rotational gestures take longer 
to detect, however, requiring the user to perform a rela-
tively precise movement in the form of a full circle to acti-
vate the desired action. We also find it disadvantageous that 
the circular motion seemed to be most naturally performed 
around the target, in contrast to diagonal rubbing, in which 
the user points directly to the target and, if desired, rubs 
through it.  

It is worth noting that rubbing actions become increasingly 
harder to use when targets are very close to the edges of the 
touch-sensitive surface. This could be addressed in software 
by taking into account the starting position of the rubbing 
gesture and adjusting its behavior near edges, much like the 
edge-awareness of Shift [20].  

Tapping: Bimanual input on passive touch screens 
To enable support for limited multi-touch interaction, we 
make use of a common passive touch-screen characteristic, 
similar to the approach used by Matsushita and colleagues 
[13]. Many types of passive touch screens, when touched at 
two locations, will report a cursor position somewhere 
along the vector between the first and second point. The 
reported cursor position will typically be closer to the point 
where most pressure is applied.  

When a location is touched, followed by a sufficiently large 
cursor movement while maintaining the touch, we can sus-
pect a second touch. We can conclude that we are not deal-
ing with dragging if the change in reported position exceeds 
a fixed velocity threshold—it would most likely be caused 
by a second touch. A large jump back to the original loca-
tion then indicates the release of the second touch.  

We use the term tap to refer to a quick touch-and-release 
action with a secondary finger. Tapping requires that the 
first touch is not released during tapping with the secondary 
finger. The primary finger must remain stationary during 
the touch-and-release of a tap, but can be repositioned be-
tween taps. 

Tapping can be used to trigger a range of functionality. In 
its simplest form, tapping detected at any location could 
trigger an action. For example, this allows touching to be 
treated only as tracking on a passive touch screen, with tap-
ping mapped to a click. Furthermore, multiple, spatially 
distinct tapping zones can be defined, where each triggers 
different functionality, such as left and right mouse clicks.   

It is important that the tap be performed sufficiently far 
from the first touch, so that it is not confused with a drag-
ging motion; otherwise, it will not be detected as a second 
touch. However, the distance at which the second touch is 
registered depends not only on the distance between the two 
contact points, but also on the relative pressure applied to 
each point. We use a threshold distance of 50 pixels (a run-
time modifiable parameter determined during our pilot 



 

 

studies) to differentiate a tap from a dragging motion, based 
on the case of two equally firm touches, with an added 
safety margin. It is important to note, however, that a failed 
tap will not have critical consequences: It will merely cause 
the cursor to move back and forth between the locations. 
The user can immediately notice that the desired action was 
not performed and repeat the tap in a less ambiguous fash-
ion. 

Reducing the error rate with a click 
During a pilot study of our techniques, it became clear that 
participants sometimes unintentionally triggered a selection 
by accidentally releasing contact. This can occur quite eas-
ily on touch-surface technologies that require that firm pres-
sure be maintained, such as the common resistive touch 
surface we used. To address this issue, we have explored 
the option of confirming selection with a separate gesture.  

We use the term click to refer to a quick touch-and-release 
action with the primary finger following an initial release, 
the same gesture that MacKenzie and Oniszczak [12] re-
ferred to as “lift and tap.” To trigger selection with a click, 
the user must quickly touch and release the finger. If the 
user touches the surface for longer than a preset timeout, 
then no select action will be triggered on release. The de-
fault timeout was chosen to be 250 ms. The user can then 
retry by quickly clicking with the finger again. The advan-
tage of this approach is that users are less likely to acciden-
tally trigger a select behavior while the finger is being 
moved on the surface, as in repositioning or rubbing. How-
ever, an accidental touch and release that happens before 
the preset timeout will be registered as a click and result in 
an error. We also expected the click to introduce a slight 
performance penalty, since selection will now require an 
additional confirming click.  

NEW INTERACTION TECHNIQUES  
We implemented two rubbing techniques (Rub-Pointing 
and Rub-Pointing.Click), two tapping techniques (Zoom-
Tapping and Zoom-Tapping.Click), and a hybrid technique 
(Rub-Tapping) within a test application, described below.  

Rub-Pointing “Rub to Zoom, Release to Select” 
Rub-Pointing (Figure 2) allows the user to touch the display 
and release the finger to select, similar to Take-Off [18]. 
However, while touching the display, the user can also exe-
cute rubbing gestures: the first pair of rub-in strokes zooms 
by a factor of two, as does each successive single rub-in 
stroke, and the first pair of rub-out strokes resets the zoom 
level. As in Take-Off, the user can also adjust their finger 
position, before selecting the object by lifting the finger off 
the surface. However, it is important that the user maintain 
contact with the surface while rubbing to avoid accidental 
selection. Rub-Pointing makes it possible to zoom in a fluid 
direct-manipulation action, and supports repeated zoom-in 
and zoom-reset actions. 

Rub-Pointing.Click “Rub to Zoom, Click to Select” 
Rub-Pointing.Click (Figure 3) is a version of Rub-Pointing 
that requires a final confirming click for selection to reduce 
errors. 

Zoom-Tapping “Tap to Zoom, Release to Select” 
Zoom-Tapping (Figure 4) allows the user to touch the dis-
play with a primary finger, and, if desired, tap with a sec-
ondary finger to zoom in. A selection is performed when 
the primary finger is released. 

Each tap zooms in further around the location specified by 
the primary finger, with a default magnification factor of 
four for each tap. The user can thus quickly gain additional 
precision with a few taps and select the target of interest by 
lifting the primary finger. Our experiments and pilot studies 
indicated that a larger zoom factor was suitable for tapping, 
than for rubbing, given its better control over simultaneous 
pointing (with the stationary primary finger) and zooming 
(through tapping with the secondary finger).  

The advantage of Zoom-Tapping is that it is simple to learn 
and provides a quick means for magnification. In the inter-
est of keeping the interaction simple for study participants, 
our implementation maps only one function (zoom in) to 
tapping, thus making it impossible to reset the zoom level. 
A straightforward extension would employ the previously 
mentioned tapping zones (e.g., zooming in with a tap in the 
top half of the screen, and resetting zoom with a tap in the 
bottom half).  

Zoom-Tapping.Click “Tap to Zoom, Click to Select” 
Zoom-Tapping.Click (Figure 5) is a version of Zoom-
Tapping that requires a final confirming click for selection 
to reduce errors. 

Rub-Tapping “Rub to Zoom, Tap to Select” 
Rub-Tapping (Figure 6) combines rubbing and tapping to 
create another way to avoid accidental selection caused by 
an unintended release. Rubbing is used to zoom in or reset 
zoom (as in Rub-Pointing), but a tap with the secondary 
finger is required to confirm the selection while the primary 
finger remains on the screen. In contrast to the techniques 
that confirm a selection with a click, Rub-Tapping requires 
that two fingers simultaneously touch the screen to com-
plete the selection (which should not occur otherwise). 

EVALUATION  
To evaluate our techniques, we used our test application to 
conduct a formal user study of Rub-Pointing, Rub-
Pointing.Click, Zoom-Tapping, Zoom-Tapping.Click, and 
Rub-Tapping, comparing them against two baseline tech-
niques: Take-Off and Zoom-Pointing.  

Apparatus 
The experiment used a dual 3.0 GHz Pentium Xeon PC 
running Windows XP with a 15" resistive touch screen dis-
play (MultiQ MQ 158 POS). The display’s 1024×768 na-
tive XGA resolution results in a pixel triad width of ap-
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proximately 0.3 mm and the display was tilted approxi-
mately 15° backwards for user comfort. The experimental 
software was implemented with OpenGL and C++.  

Participants 
Twenty right-handed volunteers participated in the study 
and each received two cinema tickets as compensation. The 
8 female and 12 male participants were between 19 and 34 
years old (average 23.9, standard deviation 3.89). They 
were, or had previously been, university students. The ma-
jority of the participants were students in Media Technol-
ogy at the Royal Institute of Technology. All participants 
had used touch screens in public information kiosks, such 
as ticketing machines for public transportation. None had 
previously seen or been exposed to our rubbing and tapping 
techniques. Seven used touch screens often, whereas thir-
teen had only used them a few times. Prior to performing 
the study, most participants were positive about using touch 
screens of the size used in our study, with a few neutral 
participants and one negative participant. Four participants 
mentioned that, in their experience, such touch screens of-
ten are not sufficiently sensitive and require hard presses.  

Baseline 1: Take-Off “Release to Select with Offset Cursor” 
As a first baseline for comparison, we implemented a ver-
sion of the well-known Take-Off technique (Figure 7), 
which has also been used as a baseline in previous studies 
[18, 1, 4, 20]. Take-Off is the only technique that we tested 
that does not provide zooming capabilities, which makes it 
harder to select small targets. Due to the large size of the 
finger and the risk of occluding the cursor, Take-Off places 
the cursor at a fixed offset above the finger. After touching 
the display, the user can adjust the cursor position until it is 
over the target, and then select by releasing the finger (as 
shown in Figure 7). Additional drawbacks of this approach 
are the difficulty of knowing exactly where the cursor will 
appear upon contact and the inability to select objects at the 
bottom of the screen in an unmodified implementation.  

Baseline 2: Zoom-Pointing “Use Tool to Zoom, Click to Select” 
Our second baseline was Zoom-Pointing (Figure 8), imple-
mented to be as close as possible to the version described 
by Albinsson and Zhai [1], in which it consists of a button 
that activates the zoom mode, and a button that resets the 
zoom level. Zoom-pointing is a tool-based technique that is 
common in many modern graphical applications. If the tar-
get is sufficiently large, the user can touch it right away. 
Alternatively, the user can enter a zoom mode by touching 
the zoom button with the finger. After the finger has been 
released, the user can specify a zoom area by drawing out a 
rectangle with the finger. The application zooms up the 
screen to this rectangle after the finger has been released. 
The user can then select the target by touching it, touch the 
zoom button to enter zoom mode again (if the target is not 
sufficiently large), or reset the zoom level by touching the 
reset button (e.g., if the desired target zoomed off the 
screen). In contrast to the other techniques, Zoom-Pointing 
selects on touch, not on release, making it more error prone: 

the user cannot adjust the position or invoke zoom after 
touching. It also uses a different interaction style, involving 
multiple target acquisition steps (zoom button, rectangle, 
target), that breaks up the desired fluid interaction, as illus-
trated by the state chart in Figure 8. 

Procedure 
Each participant was asked to alternately select two targets 
placed 250 pixels apart, well away from the edges of the 
screen, in a reciprocal 1D pointing task, where zoom level 
was reset after each target selection. To maximize contrast, 
targets were green squares of varying size on a black back-
ground. A large grey offset rectangular outline helped the 
participant identify the position of the target at the begin-
ning of each trial. The rectangular outline was hidden upon 
touch. Auditory feedback was provided with a low-
frequency beep for errors and a high-frequency beep when 
the participant successfully selected a target. The software 
logged times and hit positions, such that completion times 
and error rates could be derived. 

Design 
A repeated-measures, within-subjects study was performed. 
There were five target widths (1, 2, 4, 8, and 16 pixels = 
0.3, 0.6, 1.2, 2.4 and 4.8 mm) and seven techniques (Take-
Off, Zoom-Pointing, Rub-Pointing, Rub-Pointing.Click, 
Zoom-Tapping, Zoom-Tapping.Click, and Rub-Tapping). 
The order in which the techniques were presented was ran-
domized, and the order in which sizes were presented was 
randomized for each block of trials. An analysis found no 
significant effects of order on the results. After seeing a 
demonstration of a technique, a participant performed an 
initial block of 10 practice trials (2 trials × 5 widths) with 
that technique, where each trial needed to result in a suc-
cessful selection for the program to proceed, to ensure that 
the participant experienced successful selections for the 
technique. However, the participant was allowed to ask the 
experimenter to manually advance the test to the next trial 
after an unsuccessful attempt for difficult conditions, such 
as Take-Off with 1-pixel targets. This first block was fol-
lowed by a block of 15 practice trials (3 trials × 5 widths) 
for the technique that behaved as in the real test, where a 
failed attempt would always proceed to the next trial. After 
this preparation, the participant performed a block of 70 test 
trials for the technique (14 trials × 5 widths). Consequently, 
we had: 

1 trials × 5 widths = 5 demonstration trials

2 trials × 5 widths = 10 practice trials (must succeed)

+ 3 trials × 5 widths = 15 practice trials

+ 14 trials × 5 widths = 70 test trials

95 trials
× 7 techniques

665 selections per participant  
Thus, for each of the seven techniques, a participant re-
ceived a demonstration, followed by two blocks of practice 



 

 

trials, followed by a block of 70 test trials. We found it nec-
essary to group the demonstration, practice trials, test trials 
and questionnaire together for each technique to avoid con-
fusing the participants, given the large number of tech-
niques tested and the similarities in how they worked.  

Hypotheses 
Prior to running the experiment, we formulated the follow-
ing hypotheses: 

H1: For small targets, Take -Off will have higher error rates 
than all other techniques, due to its lack of support for 
zooming. 

H2: As target size increases, Take-Off will approach the 
error rates of the rubbing and tapping techniques. 

H3: As target size increases, Take-Off will approach the 
completion-time performance of the rubbing and tapping 
techniques. 

H4: Rub-Pointing.Click and Zoom-Tapping.Click will have 
fewer errors than Rub-Pointing and Zoom-Tapping, respec-
tively, due to the added click timeout. 

H5: Zoom-Tapping and Zoom-Tapping.Click will be faster 
than Rub-Pointing and Rub-Pointing.Click, respectively, for 
small targets, since each rub moves the targeting location 
and requires reacquisition of the target after zoom.  

H6: Rub-Tapping will have the best error rate because it is 
the only technique where selection requires a simultaneous 
tap with the secondary finger for selection (which would be 
unlikely to occur by accident). 

Analysis 
To mitigate the common skewing associated with human 
response times, and remove the influence of potential out-
liers, we analyzed the median (rather than mean) comple-
tion times for each block of 14 repetitions per cell (14 trials 
× 5 widths × 7 techniques per subject). A within-subjects 
analysis of variance (ANOVA) was then performed on the 
median completion times. In addition, a within-subjects 
ANOVA was performed on the mean error rate for all tech-
niques over all target sizes. We used an α of 0.05 to deter-
mine statistical significance.  

Error rate 
A within-subjects ANOVA of mean errors show that target 
size (F4, 76 = 34.22, p < 0.001) and technique (F6, 114 = 24.74, 
p < 0.001) had a significant effect on error rate, with a sig-
nificant interaction between size and technique 
(F24, 456 = 24.39, p < 0.001). Paired samples t-tests with a 
Bonferroni adjustment show that Take-Off had significantly 
more errors than all other techniques for 1-pixel targets. It 
was also significantly worse than all but Zoom-Pointing for 
2-pixel targets. Finally, for 4-pixel targets, it was signifi-
cantly worse than Rub-Pointing.Click.  

Zoom-Pointing had significantly more errors than all rub-
bing techniques (Rub-Pointing, Rub-Pointing.Click, and 

Rub-Tapping) for 1- and 2-pixel targets. It also had signifi-
cantly more errors than Zoom-Tapping.Click for 2-pixel 
targets. 

No significant difference was found in error rate between 
the other techniques across the different target sizes and we 
could thus not verify hypotheses H4 and H6. 

These results confirm hypotheses H1 and H2. Figure 9 clear-
ly illustrates how the error rate for Take-Off decreases with 
increased target sizes. A mean error rate of 3.5–14% for our 
techniques is shown, where Rub-Pointing.Click (3.5–5.7%) 
and Rub-Pointing (6.4–11%) have the best results.  

0%

20%

40%

60%

80%

100%

1 px 2 px 4 px 8 px 16 px

Take-Off

Zoom-Pointing

Rub-Pointing.Click

Rub-Pointing

Zoom-Tapping.Click

Zoom-Tapping

Rub-Tapping
  

Figure 9. Mean Error Rates and SEM (Standard Error of the 
Mean) for the seven techniques at different target sizes.  

Completion time 
Similar to the experience of Benko and colleagues [4], we 
had two blocks without a single completed trial for the 
smallest targets. These blocks happened for two of the par-
ticipants in the difficult condition of Take-Off with 1-pixel 
targets. We therefore chose to divide our analysis of com-
pletion times into two parts.  

First, we conducted an ANOVA on target sizes 2–16 pixels 
over all techniques, which showed that technique had a 
significant effect on completion time (F6, 114 = 84.67, 
p < 0.001).  Paired samples t-tests with a Bonferroni ad-
justment show that Take-Off was significantly slower than 
all our rubbing and tapping techniques for 2-, 4- and 8-pixel 
targets. Rub-Pointing was significantly faster than Take-Off 
for 16-pixel targets (t19 = 5.96, p < 0.001). This result con-
firms hypothesis H3 with the exception of Rub-Pointing 
being significantly faster than Take-Off for all target sizes. 

Zoom-Pointing proved to be significantly slower than all 
rubbing and tapping techniques over all sizes, and signifi-
cantly slower than Take-Off for the 16-pixel targets 
(t19 = 5.21, p < 0.001), as shown in Figure 10. 
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Figure 10. Mean Median Completion times and SEM (Stan-
dard Error of the Mean) for the seven techniques at different 

target sizes. 

Second, we ran an ANOVA on 1-pixel targets over all 
techniques except Take-Off, and  found a significant effect 



 

 

of technique on completion time (F5, 95 = 103.33, p < 0.001). 
Paired samples t-tests with Bonferroni adjustment showed 
that Zoom-Pointing was also significantly slower than the 
other techniques for 1-pixel targets. 

No significant differences were found between the rubbing 
and tapping-techniques at any target size, and hypothesis H5 
could thus not be confirmed.  

Qualitative Feedback 
After finishing the trials for a technique, the participants 
filled in a questionnaire in which they ranked the experi-
enced technique on a seven-point Likert scale (–3 to 3) with 
regard to learnability, ease of use, comfort, user experience, 
and perceived speed. They were also encouraged to provide 
written and verbal comments. At the end of the study, they 
commented on the techniques they liked the most and the 
least. A summary of the results is shown in Figure 11. The 
experimenter also took notes, recording events of interest 
that occurred during the test. 

Learnability 
Several participants commented that all the techniques were 
easy to understand after instruction.  

Ease of use 
Especially for small targets, there were frequent comments 
that Take-Off was “impossible to use”, while some partici-
pants commented that it was easy to use for large objects. 
While Rub-Pointing.Click seemed easier to use than Rub-
Pointing, this was not the case for Zoom-Tapping.Click and 
Zoom-Tapping. The experimenter noticed several cases 
where the participant would forget to assure that the posi-
tion of the finger was over the target for the non-click ver-
sions, rendering Rub-Pointing.Click more robust than Rub-
Pointing. For Zoom-Tapping.Click, however, the confirm-
ing click could result in confusion, since the actions for the 
dominant and non-dominant hands became similar. Three 
participants commented that it was not intuitive to activate 
selection by tapping outside the target for Rub-Tapping. 

Comfort 
Many participants complained that Take-Off demanded 
excessive visual concentration, which led to eye fatigue. 
Visual concentration alone was often not sufficient, and the 
participant would lean over the display, resulting in shoul-
der and back strain.  

The major disadvantage of the tapping techniques was the 
requirement of two hands, which participants felt was more 
complicated and less comfortable. The use of two hands 
also appeared to require higher cognitive load to coordinate 
them, which seemed to be especially evident in Zoom-
Tapping.Click, where the actions of the dominant and non-
dominant hands were sometimes confused.  

The combination of rubbing techniques and the display 
surface resulted in friction, which was uncomfortable for 

some participants. Several commented that a display with 
less friction would work better. Surface acoustic wave 
touch screens (e.g., as used by Albinsson and Zhai [1]) are 
typically made of glass and have a more sensitive touch 
response, reporting both location and a measure of applied 
pressure. They are, however, less common in consumer 
devices than resistive touch screens, such as the one we 
used. Rub-Tapping generated friction from rubbing and 
required two hands, and was disliked by most participants.  
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Figure 11. The seven techniques, as rated by the participants. 
Top:  Median plot. Bottom: Mode plot. 

User experience 
Take-Off was frustrating due to the targeting difficulties for 
small objects, which annoyed several participants. Partici-
pants found Zoom-Pointing cumbersome, due to the many 
steps involved in the interaction.  

Speed 
Take-Off, which was perceived to be the slowest, de-
manded a great deal of concentration for smaller objects, 
whereas Zoom-Pointing, perceived to be the second slow-
est, required multiple steps. 

Most preferred techniques 
Participants were asked to specify and comment on the 
techniques they liked the most. Zoom-Pointing (“natural”, 
“intuitive”, “no need to rub”), Rub-Pointing (“fast”), Rub-
Pointing.Click (“precise”), and Zoom-Tapping.Click (“pre-
cise”) were each selected by four participants. Zoom-
Tapping (“fast”) was selected by five participants. (One 
participant specified both versions of Zoom-Tapping as the 
most preferred and one participant specified both Rub-
Tapping and Rub-Pointing.) No one selected Take-Off. The 
most popular properties cited in the comments (by eight 
participants each) were intuitiveness and speed. None of the 
participants that preferred Zoom-Pointing mentioned speed, 
however. 



 

 

Least preferred techniques 
Participants were also asked to specify and comment on the 
techniques they liked the least. Ten participants chose 
Take-Off (“difficult to target”), whereas five picked Zoom-
Pointing (“too many steps”, “tedious to select the zoom 
tool”). Two participants selected Rub-Tapping (“slow”, 
“not logical”). Two participants disliked all the rubbing 
techniques (“uncomfortable”). The two participants that 
disliked Zoom-Tapping.Click (“confusing“) had Zoom-
Pointing as their favorite (“easy”).  

Discussion 
As in previous studies [1, 4], Take-Off had a high error rate 
for small targets and was increasingly better for larger tar-
gets, approaching the performance of our rubbing and tap-
ping techniques. However, given Take-Off’s poor perform-
ance for small objects, it was listed as the least preferred 
technique by half of the participants.  

Zoom-Pointing, which was significantly faster than Albins-
son and Zhai’s techniques [1] was significantly slower than 
all our techniques. The numerous sequential steps were not 
only perceived as cumbersome and slow, but also require 
visual attention and provide multiple opportunities for mis-
takes, such as not pressing sufficiently hard when dragging 
out the zoom area or forgetting to activate the zoom button 
in repeated zooming.  

The study shows that all rubbing and tapping techniques 
were significantly faster than Take-Off for up to 8-pixel 
targets (2.4 mm) and faster than Zoom-Pointing for all siz-
es. They also had fewer errors than Take-Off and Zoom-
Pointing for small targets. There were no significant differ-
ences in speed between the rubbing and tapping techniques. 
The variations of Rub-Pointing and Zoom-Tapping that 
used an additional click were not significantly slower, 
which is encouraging. 

The major disadvantage of the rubbing techniques was the 
fatigue incurred by the friction between the finger and the 
display. However, they had a high perceived speed and ease 

of use. It is interesting to note that some users did not like 
the tapping techniques because they required two hands and 
were more attention-demanding than rubbing, even in the 
case of the single tap for Zoom-Tapping.  

Our results also supported the importance of having a dis-
tinct separation of operations, whether in a single-handed 
gesture (e.g., rubbing in and rubbing out) or a bimanual 
interaction (e.g., Zoom-Tapping). Similarity between the 
dominant hand click and the non-dominant hand tap for 
Zoom-Tapping.Click, for example, confused several users, 
and led to a higher error rate 

Finally, Rub-Tapping provided no advantage, as there was 
no significant difference in error rate—it merely combined 
the disadvantages of the rubbing and tapping techniques. 

TOUCHVIEW: A ZOOMABLE IMAGE VIEWER 
As an example of a practical application, we developed 
TouchView, a touch-screen display photo viewer that uses 
rubbing and tapping (Figures 12–13). TouchView was im-
plemented in C++ and OpenGL. The user can pan the im-
age with a finger, using familiar dragging motions, and con-
trol the zoom level, using rubbing or tapping. In Touch-
View, we use two tapping zones, where tapping in the up-
per half of the display zooms in, and tapping in the bottom 
part zooms out. TouchView demonstrates how our tech-
niques allow a clean and simple passive touch-screen inter-
face that supports panning and zooming, but avoids the use 
of on-screen widgets that might otherwise occlude content 
of interest.  

TOUCHDAEMON: A PLUGIN TO ENABLE RUBBING 
AND TAPPING IN EXISTING APPLICATIONS 
There are many applications for which we do not have con-
trol over their source code or cannot otherwise modify their 
behavior. To address these, we developed TouchDaemon, a 
program that can be run in the background under Windows 
XP to detect rubbing and tapping gestures being performed 
on a touch-screen display. TouchDaemon uses Windows 
hooks along with the Raw Input Model to detect and inter-

 Figure 12. Rubbing in the 
TouchView image viewer 
allows fluid zooming, inte-
grated with pointing and 
panning, while avoiding 
the need for on-screen 
widgets. 
 

   

 Figure 13. TouchView al-
lows the user to incremen-
tally zoom in and out using 
two tapping zones. Here, 
the user taps in the upper 
part of the screen to zoom 
in on the location indicated 
by the right hand finger.  

 



 

 

cept touch-screen events. Upon recognizing rubbing and 
tapping gestures, it can replace them with appropriately 
mapped actions.  

As shown in Figure 14, we use rubbing to control Google 
Maps [8], running in a web browser. We accomplish this by 
mapping rubbing gestures to scroll events in TouchDae-
mon. When the unmodified JavaScript on the web page 
receives the synthesized scroll-up or scroll-down event, it 
initiates a zoom-in or zoom-out action.  

CONCLUSIONS AND FUTURE WORK 
We have introduced and evaluated two families of single-
handed and bimanual interaction techniques for interaction 
on single-touch displays. Given potential parallax issues 
and occlusion by the user’s hand, these techniques avoid 
relying on widgets and other on-screen visual artifacts, and 
instead provide precision through simple gestures. We be-
lieve this is one of the reasons why our techniques have 
proven to have consistent performance and high selection 
speeds (on average < 2 s) for all target sizes.  

Our study shows that our techniques perform significantly 
better than the well-known Take-Off and Zoom-Pointing 
techniques. The rubbing and tapping techniques combine 
pointing and zooming into a single direct-manipulation ac-
tion (in the spirit of combining marking and direct manipu-
lation [11]), and maintain the possibility of direct and sim-
ple touch-screen pointing for large objects, while affording 
the ability to zoom if additional precision is needed.  

Based on the results of our studies, and our own experience, 
we can make a number of recommendations. We suggest 
using tapping when more control is desired, bimanual inter-
action is acceptable, and the screen is sufficiently large (due 
to the distance needed between the two touches for disam-
biguation). We suggest using rubbing when friction isn't a 
problem (e.g., a smooth glass screen, as on the iPhone), a 
single finger is preferred, and the screen is either small 
(e.g., a cell phone) or large. For increased robustness, a 
confirming click can be added; our study shows no signifi-
cant speed penalty despite the additional step. 

We intend to evaluate our techniques on smaller displays 
where precise pointing is even harder. Experiments indicate 
that our rubbing techniques work well with pen interaction 
(e.g., on Tablet PCs and passive PDA screens), and we ex-
pect that the relative lack of friction in comparison with 
finger rubbing will eliminate concerns about fatigue.  
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 Figure 14. TouchDaemon 
allows rubbing and tap-
ping to control unmodi-
fied Windows applica-
tions, such as Google 
Maps running inside a 
web browser. 




