
Olwal, A., Feiner, S., and Heyman, S. Rubbing and Tapping for Precise and Rapid Selection on Touch-Screen Displays.
Proceedings of CHI 2008 (SIGCHI Conference on Human Factors in Computing Systems), Florence, Italy, April 5-10, 2008, pp. 295-304.

Rubbing and Tapping for Precise and Rapid
Selection on Touch-Screen Displays

Alex Olwal1 Steven Feiner2 Susanna Heyman1
1School of Computer Science and Communication
KTH (Royal Institute of Technology), Stockholm

2Department of Computer Science
Columbia University, New York, NY

alx@csc.kth.se, feiner@cs.columbia.edu, susanna.heyman@gmail.com

Figure 1. Rubbing and tapping gestures activate operations while the user is touching the display, so that additional parameter

control and functionality can be activated during the fluid interaction. (a) Rubbing in and (b) rubbing out support two operations.
(c) Bimanual interaction on single-touch displays is simulated with a set of “tapping” techniques, where operations are executed by

tapping with a secondary finger (left), while the primary finger (right) is touching the display.

ABSTRACT
We introduce two families of techniques, rubbing and tap-
ping, that use zooming to make precise interaction on pas-
sive touch screens possible. Rub-Pointing uses a diagonal
rubbing gesture to integrate pointing and zooming in a sin-
gle-handed technique. In contrast, Zoom-Tapping is a two-
handed technique in which the dominant hand points, while
the non-dominant hand taps to zoom, simulating multi-
touch functionality on a single-touch display. Rub-Tapping
is a hybrid technique that integrates rubbing with the domi-
nant hand to point and zoom, and tapping with the non-
dominant hand to confirm selection. We describe the results
of a formal user study comparing these techniques with
each other and with the well-known Take-Off and Zoom-
Pointing selection techniques. Rub-Pointing and Zoom-
Tapping had significantly fewer errors than Take-Off for
small targets, and were significantly faster than Take-Off
and Zoom-Pointing. We show how the techniques can be
used for fluid interaction in an image viewer and in existing
applications, such as Google Maps.

Author Keywords
Pointing, interaction techniques, touch screens, rubbing,
tapping, Rub-Pointing, Zoom-Tapping, Rub-Tapping.

ACM Classification Keywords
H.5.2 (User Interfaces): Graphical user interfaces, Input
devices and strategies, Interaction styles.

INTRODUCTION
Passive touch screens and finger-pointing interaction tech-
niques are well established in public installations, such as
information kiosks and automated teller machines. Addi-
tionally, they are gaining popularity in consumer devices,
such as cell phones and PDAs. While passive touch screens
are intuitive and easy to learn, there are severe limitations
in the precision with which a user can interact with them.
While it is easy to select large objects by finger pointing, it
can be difficult to select very small objects or specify pixel-
accurate locations. This type of interaction can be critical in
effective selection of small targets on maps or small GUI
elements in an operating system [1, 4, 18]. Touch-screen
interaction can be complicated by occlusion of the target by
the user’s hand, imprecision in selection with a finger that
is relatively large compared with the target, poor calibra-
tion, and parallax errors caused by the offset between the
display surface and the overlaid touch surface.

We are especially interested in touch-screen interaction
techniques that support fluid interaction and do not require
multiple steps [1] or rely on on-screen widgets [1, 20]. We
would like our techniques to, as much as possible, behave
like the ones from which they are derived, with the possibil-
ity of supporting more precise targeting when necessary,
without disrupting the overall interaction. In this paper, we
explore how this goal can be achieved by directly integrat-
ing zooming gestures with the pointing action. We address
applications in which zooming the display is not problem-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

(a) (b) (c)

atic, and may even be desirable. This includes not only full-
fledged zoomable user interfaces [3], but also systems for
browsing maps (e.g., [8]), exploring images or navigating
other types of information spaces.

We introduce and evaluate two families of interaction tech-
niques, rubbing and tapping, comparing them with two ex-
isting baseline techniques. Rubbing and tapping both use
zooming to make possible precise interaction on commod-
ity passive touch-screen devices. Tapping takes advantage
of unique features of passive touch-screens, whereas rub-
bing can also be used on devices with active digitizers, such
as Tablet PCs.

The rubbing techniques (Figure 1a–b) augment single-
handed pointing with integrated gestural interaction to trig-
ger actions. One example is Rub-Pointing, in which rubbing
the screen zooms in about the targeted location.

The tapping techniques (Figure 1c) enable two-handed in-
teraction on single-touch displays, allowing the user’s non-
dominant hand to perform an action in parallel with point-
ing by the dominant hand. One example is Zoom-Tapping,
in which the dominant hand points, while the non-dominant
hand zooms by tapping the screen. This is accomplished by
taking advantage of the ability of many passive touch-
screen technologies to average the location of multiple si-
multaneous points of contact, such that a second touch can
be inferred. (While multi-touch devices and technologies
are starting to appear [2, 9, 10, 14, 6], we note that single-
touch passive touch-screens are still the most common
technology on devices such as public kiosks, point-of-sale
displays, personal computers and handhelds.)

We also combine rubbing and tapping to create Rub-
Tapping, a hybrid two-handed technique in which rubbing
controls zoom, while tapping confirms the selection.

To demonstrate our touch screen techniques in practical
applications, we developed TouchView—a zoomable image
viewer that avoids the use of on-screen widgets altogether.
To enable the use of our techniques in third-party programs,
we implemented a daemon for Windows XP that intercepts
touch screen data in the background, listening for gestures.
When rubbing or tapping is detected, the daemon can send
various events to the active window. We demonstrate how
we use this to, for example, control zooming and panning in
Google Maps in a web browser.

RELATED WORK
Potter and colleagues [18] introduced the Take-Off interac-
tion technique for high-precision touch-screen pointing, in
which the user controls a cursor that is located slightly
above the finger to ensure its visibility, and the selection is
made upon releasing the finger from the surface. Albinsson
and Zhai [1] compared Take-Off with traditional Zoom-
Pointing and two new touch-screen interaction techniques
that do not use zooming. In Zoom-Pointing, a user first en-
ters zoom mode to specify a bounding box that is scaled up
to fill the workspace, and then points and selects within the

scaled space. Albinsson and Zhai showed that, averaged
over all target widths, Zoom-Pointing was significantly
faster than the other techniques they tested, with the same
error rate.

As Buxton points out [5], a touch screen and stylus with a
button or tip-switch offers a three-state input model, sup-
porting an out-of-range state (offering passive tracking,
since the finger/stylus is visible relative to the screen), a
tracking state (button/tip-switch not depressed), and a drag-
ging state (button/tip-switch depressed). In contrast, many
finger-operated touch screens provide only two intrinsic
states: out-of-range (offering passive tracking) and tracking
(often used for selection/dragging by having the touch in-
voke a mouse button press). Like other work, rubbing and
tapping make possible through software the recognition of
additional states beyond the two supported directly in the
hardware.

To avoid overloading tracking with selection on intrinsi-
cally two-state devices, MacKenzie and Oniszczak [12]
describe the use of a lift-and-tap gesture to perform selec-
tion on a passive touchpad. Benko and colleagues [4] in-
stead use a rocking and pressing gesture of the tracked fin-
ger to trigger selection on a vision-tracked tabletop, since
they are able to detect the full contact area in the camera
image. Their computer vision system also provides support
for true multi-touch interaction, enabling sophisticated
techniques for controlling precision using multiple hands,
which are unfortunately not applicable to common single-
touch displays. The techniques we present here use rubbing
and tapping on a single-touch passive touch screen to trig-
ger zooming and selection, and are applicable to traditional
single-touch displays, as well as to multi-touch displays.

Vogel and Baudisch present Shift [20], a technique for sin-
gle-touch displays that addresses the problems of the Take-
Off technique not by offsetting the cursor, but by instead
introducing a small offset callout that displays a copy of the
area under the finger with its cursor. The callout is pre-
sented automatically when the finger is determined to ob-
scure a sufficiently small potential target, and, in some va-
riants, the small portion of the display in the callout is
zoomed for easier selection. In contrast, rubbing and tap-
ping do not rely on the properties of target objects, but can
operate instead on the current position alone (e.g., to zoom
the entire scene). Rubbing and tapping also provide explicit
control over zoom, which is desirable in many browsing
applications. Rubbing could even be combined with Shift to
support one-handed user-controlled zooming in the callout.

RUBBING AND TAPPING

Rubbing: Expanding pointing with simple gestures
Rubbing provides additional parameter control through a
simple rubbing gesture while interacting with a touch
screen. Our approach takes into account the orientation of
the gesture, to allow for direct access to two operations by
“rubbing in” or “rubbing out.” After touching the display,

rubbing is performed through a small repetitive diagonal
motion of the finger (Figure 1a–b), described in detail be-
low. A right-handed user “rubs in” by rubbing back and
forth along the lower-left-to-upper-right diagonal, and “rubs
out” by rubbing along the lower-right-to-upper-left diagonal
(with the motions switched for left-handed users). We
found that rubbing out is slightly less convenient to per-
form, which gives rise to an effective distinction between
the two in kinesthetic memory.

In the implementation used in our study, we mapped “rub-
bing in” and “rubbing out” to zooming in incrementally in
discrete steps and resetting zoom, respectively. Other proto-
types, which we describe later, replace the action of reset-
ting zoom with zooming out incrementally. Alternatively,
different actions could be invoked, such as increasing or
decreasing the level of detail displayed, or cycling through
different visualization approaches. (For example, an early
implementation of rubbing was used to control the distor-
tion in a fisheye lens [17].)

We developed the rubbing and tapping gestures through an
iterative experimental design process. Results from a ten-
user pilot study allowed us to reject several complicated
designs in favor of diagonal rubbing, which was the most
comfortable, easiest to learn and practical. A second five-
user pilot study allowed us to fine-tune zoom factors, thre-
sholds, behavior, and timeouts (all default numeric values
are, however, run-time modifiable and configurable).

Rubbing is detected as a series of discrete, roughly diago-
nal, strokes. A short quick stroke, followed by another short
quick stroke in the roughly diagonally opposite direction
identifies rubbing. We recognize strokes and their direc-
tions through simple tests. Consider the three successive
cursor position samples: (x0, y0), (x1, y1), and (x2, y2). If
sign (x1–x0) ≠ sign (x2–x1) AND sign (y1–y0) ≠ sign (y2–
y1), then (x1, y1) ends the previous stroke and begins the
next. The slope of the line between the first and last points
of a stroke must be finite and positive for rubbing in, finite
and negative for rubbing out.

A stroke must also meet length and time constraints to be
considered part of a rubbing action. A rubbing stroke must
be longer than three pixels and shorter than fifty pixels and
end within 500 ms of the previous stroke. An initial pair of
these quick strokes in roughly opposite directions (i.e.,
strokes whose slopes have the same sign) identifies rubbing
and triggers initial zooming. The deliberate nature of the
gesture minimizes the risk of the rubbing strokes being ac-
cidentally confused with other finger movement on the sur-
face (e.g., for dragging and panning).

Rubbing involves directional gestures, which suggests an
interesting comparison to marking and marking menus [11].
However, unlike the marks of marking menus, the tiny
strokes of rubbing are scale-dependent (strokes that are too
large are ignored), time-dependent (strokes must be com-
pleted sufficiently quickly to be counted) and always com-
pound (a pair of strokes is required to initiate the action).

We also investigated the use of a clockwise circular motion
to rub in, and a counterclockwise circular motion to rub out,
inspired by a long history of earlier work on rotational ges-
tures (e.g., [16, 7, 15, 19]). Rotational gestures take longer
to detect, however, requiring the user to perform a rela-
tively precise movement in the form of a full circle to acti-
vate the desired action. We also find it disadvantageous that
the circular motion seemed to be most naturally performed
around the target, in contrast to diagonal rubbing, in which
the user points directly to the target and, if desired, rubs
through it.

It is worth noting that rubbing actions become increasingly
harder to use when targets are very close to the edges of the
touch-sensitive surface. This could be addressed in software
by taking into account the starting position of the rubbing
gesture and adjusting its behavior near edges, much like the
edge-awareness of Shift [20].

Tapping: Bimanual input on passive touch screens
To enable support for limited multi-touch interaction, we
make use of a common passive touch-screen characteristic,
similar to the approach used by Matsushita and colleagues
[13]. Many types of passive touch screens, when touched at
two locations, will report a cursor position somewhere
along the vector between the first and second point. The
reported cursor position will typically be closer to the point
where most pressure is applied.

When a location is touched, followed by a sufficiently large
cursor movement while maintaining the touch, we can sus-
pect a second touch. We can conclude that we are not deal-
ing with dragging if the change in reported position exceeds
a fixed velocity threshold—it would most likely be caused
by a second touch. A large jump back to the original loca-
tion then indicates the release of the second touch.

We use the term tap to refer to a quick touch-and-release
action with a secondary finger. Tapping requires that the
first touch is not released during tapping with the secondary
finger. The primary finger must remain stationary during
the touch-and-release of a tap, but can be repositioned be-
tween taps.

Tapping can be used to trigger a range of functionality. In
its simplest form, tapping detected at any location could
trigger an action. For example, this allows touching to be
treated only as tracking on a passive touch screen, with tap-
ping mapped to a click. Furthermore, multiple, spatially
distinct tapping zones can be defined, where each triggers
different functionality, such as left and right mouse clicks.

It is important that the tap be performed sufficiently far
from the first touch, so that it is not confused with a drag-
ging motion; otherwise, it will not be detected as a second
touch. However, the distance at which the second touch is
registered depends not only on the distance between the two
contact points, but also on the relative pressure applied to
each point. We use a threshold distance of 50 pixels (a run-
time modifiable parameter determined during our pilot

studies) to differentiate a tap from a dragging motion, based
on the case of two equally firm touches, with an added
safety margin. It is important to note, however, that a failed
tap will not have critical consequences: It will merely cause
the cursor to move back and forth between the locations.
The user can immediately notice that the desired action was
not performed and repeat the tap in a less ambiguous fash-
ion.

Reducing the error rate with a click
During a pilot study of our techniques, it became clear that
participants sometimes unintentionally triggered a selection
by accidentally releasing contact. This can occur quite eas-
ily on touch-surface technologies that require that firm pres-
sure be maintained, such as the common resistive touch
surface we used. To address this issue, we have explored
the option of confirming selection with a separate gesture.

We use the term click to refer to a quick touch-and-release
action with the primary finger following an initial release,
the same gesture that MacKenzie and Oniszczak [12] re-
ferred to as “lift and tap.” To trigger selection with a click,
the user must quickly touch and release the finger. If the
user touches the surface for longer than a preset timeout,
then no select action will be triggered on release. The de-
fault timeout was chosen to be 250 ms. The user can then
retry by quickly clicking with the finger again. The advan-
tage of this approach is that users are less likely to acciden-
tally trigger a select behavior while the finger is being
moved on the surface, as in repositioning or rubbing. How-
ever, an accidental touch and release that happens before
the preset timeout will be registered as a click and result in
an error. We also expected the click to introduce a slight
performance penalty, since selection will now require an
additional confirming click.

NEW INTERACTION TECHNIQUES
We implemented two rubbing techniques (Rub-Pointing
and Rub-Pointing.Click), two tapping techniques (Zoom-
Tapping and Zoom-Tapping.Click), and a hybrid technique
(Rub-Tapping) within a test application, described below.

Rub-Pointing “Rub to Zoom, Release to Select”
Rub-Pointing (Figure 2) allows the user to touch the display
and release the finger to select, similar to Take-Off [18].
However, while touching the display, the user can also exe-
cute rubbing gestures: the first pair of rub-in strokes zooms
by a factor of two, as does each successive single rub-in
stroke, and the first pair of rub-out strokes resets the zoom
level. As in Take-Off, the user can also adjust their finger
position, before selecting the object by lifting the finger off
the surface. However, it is important that the user maintain
contact with the surface while rubbing to avoid accidental
selection. Rub-Pointing makes it possible to zoom in a fluid
direct-manipulation action, and supports repeated zoom-in
and zoom-reset actions.

Rub-Pointing.Click “Rub to Zoom, Click to Select”
Rub-Pointing.Click (Figure 3) is a version of Rub-Pointing
that requires a final confirming click for selection to reduce
errors.

Zoom-Tapping “Tap to Zoom, Release to Select”
Zoom-Tapping (Figure 4) allows the user to touch the dis-
play with a primary finger, and, if desired, tap with a sec-
ondary finger to zoom in. A selection is performed when
the primary finger is released.

Each tap zooms in further around the location specified by
the primary finger, with a default magnification factor of
four for each tap. The user can thus quickly gain additional
precision with a few taps and select the target of interest by
lifting the primary finger. Our experiments and pilot studies
indicated that a larger zoom factor was suitable for tapping,
than for rubbing, given its better control over simultaneous
pointing (with the stationary primary finger) and zooming
(through tapping with the secondary finger).

The advantage of Zoom-Tapping is that it is simple to learn
and provides a quick means for magnification. In the inter-
est of keeping the interaction simple for study participants,
our implementation maps only one function (zoom in) to
tapping, thus making it impossible to reset the zoom level.
A straightforward extension would employ the previously
mentioned tapping zones (e.g., zooming in with a tap in the
top half of the screen, and resetting zoom with a tap in the
bottom half).

Zoom-Tapping.Click “Tap to Zoom, Click to Select”
Zoom-Tapping.Click (Figure 5) is a version of Zoom-
Tapping that requires a final confirming click for selection
to reduce errors.

Rub-Tapping “Rub to Zoom, Tap to Select”
Rub-Tapping (Figure 6) combines rubbing and tapping to
create another way to avoid accidental selection caused by
an unintended release. Rubbing is used to zoom in or reset
zoom (as in Rub-Pointing), but a tap with the secondary
finger is required to confirm the selection while the primary
finger remains on the screen. In contrast to the techniques
that confirm a selection with a click, Rub-Tapping requires
that two fingers simultaneously touch the screen to com-
plete the selection (which should not occur otherwise).

EVALUATION
To evaluate our techniques, we used our test application to
conduct a formal user study of Rub-Pointing, Rub-
Pointing.Click, Zoom-Tapping, Zoom-Tapping.Click, and
Rub-Tapping, comparing them against two baseline tech-
niques: Take-Off and Zoom-Pointing.

Apparatus
The experiment used a dual 3.0 GHz Pentium Xeon PC
running Windows XP with a 15" resistive touch screen dis-
play (MultiQ MQ 158 POS). The display’s 1024×768 na-
tive XGA resolution results in a pixel triad width of ap-

Figure 2. Rub-Pointing

touch rub rub rub rub move to
target

release

pick
zoom
tool [+] drag out zoom area release

touch
target release

Figure 3. Rub-Pointing.Click

tap

↑↑ ↑ ↑

tap

touch
move to
target

release

select

tap

select

Figure 4. Zoom-Tapping

touch rub rub rub rub touch
target

releaserelease↑↑↑ ↑

select

dominant hand

non-dominant hand

Figure 5. Zoom-Tapping.Click

dominant hand

non-dominant hand

touch

tap tap

releasetouch
target

release

touch rub rub rub rub

release

move to
target

↑↑↑ ↑

dominant hand

non-dominant hand

Figure 8. Zoom-Pointing (baseline technique)
select

touch

move
cursor
to target release

select

Figure 7. Take-Off (baseline technique)

Figure 6. Rub-Tapping

↑↑ ↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑

↑ ↑ ↑ ↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑

no touch select touch
zoom in

reset zoom
tracking

rubbing in

rubbing out

release
out of range

touch

no touch

select

touch
zoom in

reset zoom
tracking

rubbing in

rubbing out
release

t ≤ clickTime

out of range

touch

release
t > clickTime

no touch select touch zoom in

tracking

tap detected

release
out of range

touch

no touch

select

touch

tracking
release

t ≤ clickTime

out of range

touch

release
t > clickTime

zoom in

tap detected

no touch

select

touch
zoom in

reset zoom
tracking

rubbing in

rubbing out
tap detected

out of range

touch

release

no touch select touch

tracking

release
out of range

touch

↑ ↑ ↑ ↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑

select

not touching display
touching display

moving finger/cursor to target
rubbing↑↑
dragging out zoom rectangle

zoom in!

select select target!

Legend
For clarity, targets are colored red
before selection and green after
selection in Figures 2–8.

no touch
specify

zoom area

reset zoom

release

out of
range

pressed [+]

zoom in

zoom
mode

pressed [1:1] touch

select

touch

out of
range

select

tracking

proximately 0.3 mm and the display was tilted approxi-
mately 15° backwards for user comfort. The experimental
software was implemented with OpenGL and C++.

Participants
Twenty right-handed volunteers participated in the study
and each received two cinema tickets as compensation. The
8 female and 12 male participants were between 19 and 34
years old (average 23.9, standard deviation 3.89). They
were, or had previously been, university students. The ma-
jority of the participants were students in Media Technol-
ogy at the Royal Institute of Technology. All participants
had used touch screens in public information kiosks, such
as ticketing machines for public transportation. None had
previously seen or been exposed to our rubbing and tapping
techniques. Seven used touch screens often, whereas thir-
teen had only used them a few times. Prior to performing
the study, most participants were positive about using touch
screens of the size used in our study, with a few neutral
participants and one negative participant. Four participants
mentioned that, in their experience, such touch screens of-
ten are not sufficiently sensitive and require hard presses.

Baseline 1: Take-Off “Release to Select with Offset Cursor”
As a first baseline for comparison, we implemented a ver-
sion of the well-known Take-Off technique (Figure 7),
which has also been used as a baseline in previous studies
[18, 1, 4, 20]. Take-Off is the only technique that we tested
that does not provide zooming capabilities, which makes it
harder to select small targets. Due to the large size of the
finger and the risk of occluding the cursor, Take-Off places
the cursor at a fixed offset above the finger. After touching
the display, the user can adjust the cursor position until it is
over the target, and then select by releasing the finger (as
shown in Figure 7). Additional drawbacks of this approach
are the difficulty of knowing exactly where the cursor will
appear upon contact and the inability to select objects at the
bottom of the screen in an unmodified implementation.

Baseline 2: Zoom-Pointing “Use Tool to Zoom, Click to Select”
Our second baseline was Zoom-Pointing (Figure 8), imple-
mented to be as close as possible to the version described
by Albinsson and Zhai [1], in which it consists of a button
that activates the zoom mode, and a button that resets the
zoom level. Zoom-pointing is a tool-based technique that is
common in many modern graphical applications. If the tar-
get is sufficiently large, the user can touch it right away.
Alternatively, the user can enter a zoom mode by touching
the zoom button with the finger. After the finger has been
released, the user can specify a zoom area by drawing out a
rectangle with the finger. The application zooms up the
screen to this rectangle after the finger has been released.
The user can then select the target by touching it, touch the
zoom button to enter zoom mode again (if the target is not
sufficiently large), or reset the zoom level by touching the
reset button (e.g., if the desired target zoomed off the
screen). In contrast to the other techniques, Zoom-Pointing
selects on touch, not on release, making it more error prone:

the user cannot adjust the position or invoke zoom after
touching. It also uses a different interaction style, involving
multiple target acquisition steps (zoom button, rectangle,
target), that breaks up the desired fluid interaction, as illus-
trated by the state chart in Figure 8.

Procedure
Each participant was asked to alternately select two targets
placed 250 pixels apart, well away from the edges of the
screen, in a reciprocal 1D pointing task, where zoom level
was reset after each target selection. To maximize contrast,
targets were green squares of varying size on a black back-
ground. A large grey offset rectangular outline helped the
participant identify the position of the target at the begin-
ning of each trial. The rectangular outline was hidden upon
touch. Auditory feedback was provided with a low-
frequency beep for errors and a high-frequency beep when
the participant successfully selected a target. The software
logged times and hit positions, such that completion times
and error rates could be derived.

Design
A repeated-measures, within-subjects study was performed.
There were five target widths (1, 2, 4, 8, and 16 pixels =
0.3, 0.6, 1.2, 2.4 and 4.8 mm) and seven techniques (Take-
Off, Zoom-Pointing, Rub-Pointing, Rub-Pointing.Click,
Zoom-Tapping, Zoom-Tapping.Click, and Rub-Tapping).
The order in which the techniques were presented was ran-
domized, and the order in which sizes were presented was
randomized for each block of trials. An analysis found no
significant effects of order on the results. After seeing a
demonstration of a technique, a participant performed an
initial block of 10 practice trials (2 trials × 5 widths) with
that technique, where each trial needed to result in a suc-
cessful selection for the program to proceed, to ensure that
the participant experienced successful selections for the
technique. However, the participant was allowed to ask the
experimenter to manually advance the test to the next trial
after an unsuccessful attempt for difficult conditions, such
as Take-Off with 1-pixel targets. This first block was fol-
lowed by a block of 15 practice trials (3 trials × 5 widths)
for the technique that behaved as in the real test, where a
failed attempt would always proceed to the next trial. After
this preparation, the participant performed a block of 70 test
trials for the technique (14 trials × 5 widths). Consequently,
we had:

1 trials × 5 widths = 5 demonstration trials

2 trials × 5 widths = 10 practice trials (must succeed)

+ 3 trials × 5 widths = 15 practice trials

+ 14 trials × 5 widths = 70 test trials

95 trials
× 7 techniques

665 selections per participant
Thus, for each of the seven techniques, a participant re-
ceived a demonstration, followed by two blocks of practice

trials, followed by a block of 70 test trials. We found it nec-
essary to group the demonstration, practice trials, test trials
and questionnaire together for each technique to avoid con-
fusing the participants, given the large number of tech-
niques tested and the similarities in how they worked.

Hypotheses
Prior to running the experiment, we formulated the follow-
ing hypotheses:

H1: For small targets, Take -Off will have higher error rates
than all other techniques, due to its lack of support for
zooming.

H2: As target size increases, Take-Off will approach the
error rates of the rubbing and tapping techniques.

H3: As target size increases, Take-Off will approach the
completion-time performance of the rubbing and tapping
techniques.

H4: Rub-Pointing.Click and Zoom-Tapping.Click will have
fewer errors than Rub-Pointing and Zoom-Tapping, respec-
tively, due to the added click timeout.

H5: Zoom-Tapping and Zoom-Tapping.Click will be faster
than Rub-Pointing and Rub-Pointing.Click, respectively, for
small targets, since each rub moves the targeting location
and requires reacquisition of the target after zoom.

H6: Rub-Tapping will have the best error rate because it is
the only technique where selection requires a simultaneous
tap with the secondary finger for selection (which would be
unlikely to occur by accident).

Analysis
To mitigate the common skewing associated with human
response times, and remove the influence of potential out-
liers, we analyzed the median (rather than mean) comple-
tion times for each block of 14 repetitions per cell (14 trials
× 5 widths × 7 techniques per subject). A within-subjects
analysis of variance (ANOVA) was then performed on the
median completion times. In addition, a within-subjects
ANOVA was performed on the mean error rate for all tech-
niques over all target sizes. We used an α of 0.05 to deter-
mine statistical significance.

Error rate
A within-subjects ANOVA of mean errors show that target
size (F4, 76 = 34.22, p < 0.001) and technique (F6, 114 = 24.74,
p < 0.001) had a significant effect on error rate, with a sig-
nificant interaction between size and technique
(F24, 456 = 24.39, p < 0.001). Paired samples t-tests with a
Bonferroni adjustment show that Take-Off had significantly
more errors than all other techniques for 1-pixel targets. It
was also significantly worse than all but Zoom-Pointing for
2-pixel targets. Finally, for 4-pixel targets, it was signifi-
cantly worse than Rub-Pointing.Click.

Zoom-Pointing had significantly more errors than all rub-
bing techniques (Rub-Pointing, Rub-Pointing.Click, and

Rub-Tapping) for 1- and 2-pixel targets. It also had signifi-
cantly more errors than Zoom-Tapping.Click for 2-pixel
targets.

No significant difference was found in error rate between
the other techniques across the different target sizes and we
could thus not verify hypotheses H4 and H6.

These results confirm hypotheses H1 and H2. Figure 9 clear-
ly illustrates how the error rate for Take-Off decreases with
increased target sizes. A mean error rate of 3.5–14% for our
techniques is shown, where Rub-Pointing.Click (3.5–5.7%)
and Rub-Pointing (6.4–11%) have the best results.

0%

20%

40%

60%

80%

100%

1 px 2 px 4 px 8 px 16 px

Take-Off

Zoom-Pointing

Rub-Pointing.Click

Rub-Pointing

Zoom-Tapping.Click

Zoom-Tapping

Rub-Tapping

Figure 9. Mean Error Rates and SEM (Standard Error of the
Mean) for the seven techniques at different target sizes.

Completion time
Similar to the experience of Benko and colleagues [4], we
had two blocks without a single completed trial for the
smallest targets. These blocks happened for two of the par-
ticipants in the difficult condition of Take-Off with 1-pixel
targets. We therefore chose to divide our analysis of com-
pletion times into two parts.

First, we conducted an ANOVA on target sizes 2–16 pixels
over all techniques, which showed that technique had a
significant effect on completion time (F6, 114 = 84.67,
p < 0.001). Paired samples t-tests with a Bonferroni ad-
justment show that Take-Off was significantly slower than
all our rubbing and tapping techniques for 2-, 4- and 8-pixel
targets. Rub-Pointing was significantly faster than Take-Off
for 16-pixel targets (t19 = 5.96, p < 0.001). This result con-
firms hypothesis H3 with the exception of Rub-Pointing
being significantly faster than Take-Off for all target sizes.

Zoom-Pointing proved to be significantly slower than all
rubbing and tapping techniques over all sizes, and signifi-
cantly slower than Take-Off for the 16-pixel targets
(t19 = 5.21, p < 0.001), as shown in Figure 10.

s

1 s

2 s

3 s

4 s

1 px 2 px 4 px 8 px 16 px

Take-Off

Zoom-Pointing

Rub-Pointing.Click

Rub-Pointing

Zoom-Tapping.Click

Zoom-Tapping

Rub-Tapping

Figure 10. Mean Median Completion times and SEM (Stan-
dard Error of the Mean) for the seven techniques at different

target sizes.

Second, we ran an ANOVA on 1-pixel targets over all
techniques except Take-Off, and found a significant effect

of technique on completion time (F5, 95 = 103.33, p < 0.001).
Paired samples t-tests with Bonferroni adjustment showed
that Zoom-Pointing was also significantly slower than the
other techniques for 1-pixel targets.

No significant differences were found between the rubbing
and tapping-techniques at any target size, and hypothesis H5
could thus not be confirmed.

Qualitative Feedback
After finishing the trials for a technique, the participants
filled in a questionnaire in which they ranked the experi-
enced technique on a seven-point Likert scale (–3 to 3) with
regard to learnability, ease of use, comfort, user experience,
and perceived speed. They were also encouraged to provide
written and verbal comments. At the end of the study, they
commented on the techniques they liked the most and the
least. A summary of the results is shown in Figure 11. The
experimenter also took notes, recording events of interest
that occurred during the test.

Learnability
Several participants commented that all the techniques were
easy to understand after instruction.

Ease of use
Especially for small targets, there were frequent comments
that Take-Off was “impossible to use”, while some partici-
pants commented that it was easy to use for large objects.
While Rub-Pointing.Click seemed easier to use than Rub-
Pointing, this was not the case for Zoom-Tapping.Click and
Zoom-Tapping. The experimenter noticed several cases
where the participant would forget to assure that the posi-
tion of the finger was over the target for the non-click ver-
sions, rendering Rub-Pointing.Click more robust than Rub-
Pointing. For Zoom-Tapping.Click, however, the confirm-
ing click could result in confusion, since the actions for the
dominant and non-dominant hands became similar. Three
participants commented that it was not intuitive to activate
selection by tapping outside the target for Rub-Tapping.

Comfort
Many participants complained that Take-Off demanded
excessive visual concentration, which led to eye fatigue.
Visual concentration alone was often not sufficient, and the
participant would lean over the display, resulting in shoul-
der and back strain.

The major disadvantage of the tapping techniques was the
requirement of two hands, which participants felt was more
complicated and less comfortable. The use of two hands
also appeared to require higher cognitive load to coordinate
them, which seemed to be especially evident in Zoom-
Tapping.Click, where the actions of the dominant and non-
dominant hands were sometimes confused.

The combination of rubbing techniques and the display
surface resulted in friction, which was uncomfortable for

some participants. Several commented that a display with
less friction would work better. Surface acoustic wave
touch screens (e.g., as used by Albinsson and Zhai [1]) are
typically made of glass and have a more sensitive touch
response, reporting both location and a measure of applied
pressure. They are, however, less common in consumer
devices than resistive touch screens, such as the one we
used. Rub-Tapping generated friction from rubbing and
required two hands, and was disliked by most participants.

-2

-1

0

1

2

3

Learnability Ease of use Comfort User experience Speed

median

`

-3

-2

-1

0

1

2

3

Learnability Ease of use Comfort User experience Speed

mode Take-Off Zoom-Pointing Rub-Pointing.Click
Rub-Pointing Zoom-Tapping.Click Zoom-Tapping
Rub-Tapping

Figure 11. The seven techniques, as rated by the participants.
Top: Median plot. Bottom: Mode plot.

User experience
Take-Off was frustrating due to the targeting difficulties for
small objects, which annoyed several participants. Partici-
pants found Zoom-Pointing cumbersome, due to the many
steps involved in the interaction.

Speed
Take-Off, which was perceived to be the slowest, de-
manded a great deal of concentration for smaller objects,
whereas Zoom-Pointing, perceived to be the second slow-
est, required multiple steps.

Most preferred techniques
Participants were asked to specify and comment on the
techniques they liked the most. Zoom-Pointing (“natural”,
“intuitive”, “no need to rub”), Rub-Pointing (“fast”), Rub-
Pointing.Click (“precise”), and Zoom-Tapping.Click (“pre-
cise”) were each selected by four participants. Zoom-
Tapping (“fast”) was selected by five participants. (One
participant specified both versions of Zoom-Tapping as the
most preferred and one participant specified both Rub-
Tapping and Rub-Pointing.) No one selected Take-Off. The
most popular properties cited in the comments (by eight
participants each) were intuitiveness and speed. None of the
participants that preferred Zoom-Pointing mentioned speed,
however.

Least preferred techniques
Participants were also asked to specify and comment on the
techniques they liked the least. Ten participants chose
Take-Off (“difficult to target”), whereas five picked Zoom-
Pointing (“too many steps”, “tedious to select the zoom
tool”). Two participants selected Rub-Tapping (“slow”,
“not logical”). Two participants disliked all the rubbing
techniques (“uncomfortable”). The two participants that
disliked Zoom-Tapping.Click (“confusing“) had Zoom-
Pointing as their favorite (“easy”).

Discussion
As in previous studies [1, 4], Take-Off had a high error rate
for small targets and was increasingly better for larger tar-
gets, approaching the performance of our rubbing and tap-
ping techniques. However, given Take-Off’s poor perform-
ance for small objects, it was listed as the least preferred
technique by half of the participants.

Zoom-Pointing, which was significantly faster than Albins-
son and Zhai’s techniques [1] was significantly slower than
all our techniques. The numerous sequential steps were not
only perceived as cumbersome and slow, but also require
visual attention and provide multiple opportunities for mis-
takes, such as not pressing sufficiently hard when dragging
out the zoom area or forgetting to activate the zoom button
in repeated zooming.

The study shows that all rubbing and tapping techniques
were significantly faster than Take-Off for up to 8-pixel
targets (2.4 mm) and faster than Zoom-Pointing for all siz-
es. They also had fewer errors than Take-Off and Zoom-
Pointing for small targets. There were no significant differ-
ences in speed between the rubbing and tapping techniques.
The variations of Rub-Pointing and Zoom-Tapping that
used an additional click were not significantly slower,
which is encouraging.

The major disadvantage of the rubbing techniques was the
fatigue incurred by the friction between the finger and the
display. However, they had a high perceived speed and ease

of use. It is interesting to note that some users did not like
the tapping techniques because they required two hands and
were more attention-demanding than rubbing, even in the
case of the single tap for Zoom-Tapping.

Our results also supported the importance of having a dis-
tinct separation of operations, whether in a single-handed
gesture (e.g., rubbing in and rubbing out) or a bimanual
interaction (e.g., Zoom-Tapping). Similarity between the
dominant hand click and the non-dominant hand tap for
Zoom-Tapping.Click, for example, confused several users,
and led to a higher error rate

Finally, Rub-Tapping provided no advantage, as there was
no significant difference in error rate—it merely combined
the disadvantages of the rubbing and tapping techniques.

TOUCHVIEW: A ZOOMABLE IMAGE VIEWER
As an example of a practical application, we developed
TouchView, a touch-screen display photo viewer that uses
rubbing and tapping (Figures 12–13). TouchView was im-
plemented in C++ and OpenGL. The user can pan the im-
age with a finger, using familiar dragging motions, and con-
trol the zoom level, using rubbing or tapping. In Touch-
View, we use two tapping zones, where tapping in the up-
per half of the display zooms in, and tapping in the bottom
part zooms out. TouchView demonstrates how our tech-
niques allow a clean and simple passive touch-screen inter-
face that supports panning and zooming, but avoids the use
of on-screen widgets that might otherwise occlude content
of interest.

TOUCHDAEMON: A PLUGIN TO ENABLE RUBBING
AND TAPPING IN EXISTING APPLICATIONS
There are many applications for which we do not have con-
trol over their source code or cannot otherwise modify their
behavior. To address these, we developed TouchDaemon, a
program that can be run in the background under Windows
XP to detect rubbing and tapping gestures being performed
on a touch-screen display. TouchDaemon uses Windows
hooks along with the Raw Input Model to detect and inter-

 Figure 12. Rubbing in the
TouchView image viewer
allows fluid zooming, inte-
grated with pointing and
panning, while avoiding
the need for on-screen
widgets.

 Figure 13. TouchView al-
lows the user to incremen-
tally zoom in and out using
two tapping zones. Here,
the user taps in the upper
part of the screen to zoom
in on the location indicated
by the right hand finger.

cept touch-screen events. Upon recognizing rubbing and
tapping gestures, it can replace them with appropriately
mapped actions.

As shown in Figure 14, we use rubbing to control Google
Maps [8], running in a web browser. We accomplish this by
mapping rubbing gestures to scroll events in TouchDae-
mon. When the unmodified JavaScript on the web page
receives the synthesized scroll-up or scroll-down event, it
initiates a zoom-in or zoom-out action.

CONCLUSIONS AND FUTURE WORK
We have introduced and evaluated two families of single-
handed and bimanual interaction techniques for interaction
on single-touch displays. Given potential parallax issues
and occlusion by the user’s hand, these techniques avoid
relying on widgets and other on-screen visual artifacts, and
instead provide precision through simple gestures. We be-
lieve this is one of the reasons why our techniques have
proven to have consistent performance and high selection
speeds (on average < 2 s) for all target sizes.

Our study shows that our techniques perform significantly
better than the well-known Take-Off and Zoom-Pointing
techniques. The rubbing and tapping techniques combine
pointing and zooming into a single direct-manipulation ac-
tion (in the spirit of combining marking and direct manipu-
lation [11]), and maintain the possibility of direct and sim-
ple touch-screen pointing for large objects, while affording
the ability to zoom if additional precision is needed.

Based on the results of our studies, and our own experience,
we can make a number of recommendations. We suggest
using tapping when more control is desired, bimanual inter-
action is acceptable, and the screen is sufficiently large (due
to the distance needed between the two touches for disam-
biguation). We suggest using rubbing when friction isn't a
problem (e.g., a smooth glass screen, as on the iPhone), a
single finger is preferred, and the screen is either small
(e.g., a cell phone) or large. For increased robustness, a
confirming click can be added; our study shows no signifi-
cant speed penalty despite the additional step.

We intend to evaluate our techniques on smaller displays
where precise pointing is even harder. Experiments indicate
that our rubbing techniques work well with pen interaction
(e.g., on Tablet PCs and passive PDA screens), and we ex-
pect that the relative lack of friction in comparison with
finger rubbing will eliminate concerns about fatigue.

ACKNOWLEDGMENTS
We thank Johan Wirmark for running an earlier pilot user
study, and Ed Cutrell, Hrvoje Benko, and Patrick Baudisch
for providing useful feedback and comments. This work
was funded in part by NSF Grant IIS-01-21239.

REFERENCES
1. Albinsson, P-A. and Zhai, S. High precision touch screen interaction.

Proc. CHI ’03, ACM Press (2003), 105–112.
2. Apple iPhone. http://www.apple.com/iphone/. January 2008.
3. Bederson, B., Hollan, J., Perlin, K., Meyer, J., Bacon, D., and Furnas,

G. Pad++: A zoomable graphical sketchpad for exploring alternate in-
terface physics. Journal of Visual Languages and Computing, 7(1),
March, 1996, 3–32.

4. Benko, H., Wilson, A., and Baudisch, P. Precise selection techniques
for multi-touch screens. Proc. CHI 2006, ACM Press (2006), 1263–
1272.

5. Buxton, W. A three-state model of graphical input. In D. Diaper et al.
(eds.), Human-Computer Interaction— INTERACT '90. Amsterdam:
Elsevier Science Publishers B.V. (North-Holland), 449–456.

6. Dietz, P.H., Leigh, D.L. DiamondTouch: A multi-user touch technol-
ogy. Proc. UIST ’01, ACM Press (2001), 219–226.

7. Evans, K. B., Tanner, P. P., and Wein, M. Tablet-based valuators that
provide one, two, or three degrees of freedom. Proc. SIGGRAPH '81.
ACM Press (1981), 91–97.

8. Google Maps. http://maps.google.com/. January 2008.
9. Han, J. Y. 2005. Low-cost multi-touch sensing through frustrated total

internal reflection. Proc. UIST '05. ACM Press (2005), 115–118.
10. Jazzmutant Lemur. http://www.jazzmutant.com/lemur_overview.php.

January 2008.
11. Kurtenbach, G. and Buxton. W. Issues in combining marking and

direct manipulation techniques. Proc UIST 91, ACM Press (1991),
137–144.

12. MacKenzie, I.S. and Oniszczak, A. A comparison of three selection
techniques for touchpads. Proc. CHI '98, ACM Press (1998), 336–343.

13. Matsushita, N., Ayatsuka, Y., and Rekimoto, J. Dual touch: a two-
handed interface for pen-based PDAs. Proc. UIST '00. ACM Press
(2000), 211–212.

14. Microsoft Surface. http://www.microsoft.com/surface/. January 2008.
15. Moscovich, T. and Hughes, J. F. Navigating documents with the vir-

tual scroll ring. Proc. UIST '04. ACM Press (2004), 57–60.
16. Newman, W. A graphical technique for numerical input. The Com-

puter Journal, 11(1), 1968, 63–64.
17. Olwal, A. and Feiner S. Rubbing the fisheye: Precise touch-screen

interaction with gestures and fisheye views. Conf. Supplement of
UIST '03 (2003), 83–84.

18. Potter, R.L., Weldon, L.J., and Shneiderman, B. Improving the accu-
racy of touch screens: An experimental evaluation of three strategies.
Proc. CHI ’88, ACM Press (1988), 27–32.

19. Smith, G. and schraefel, mc. The radial scroll tool: Scrolling support
for stylus- or touch-based document navigation. Proc. UIST 2004,
ACM Press (2004), 53–56.

20. Vogel, D. and Baudisch, P. Shift: a technique for operating pen-based
interfaces using touch. Proc. CHI '07. ACM Press, (2007), 657–666.

 Figure 14. TouchDaemon
allows rubbing and tap-
ping to control unmodi-
fied Windows applica-
tions, such as Google
Maps running inside a
web browser.

